Bertrand’s Postulate

In mathematics, Bertrand’s Postulate states that there is a prime number in the range n to 2n - 2 where n is a natural number and n >= 4. It has been proved by Chebyshev and later by Ramanujan. A lenient form of the postulate states that there exists a prime in range n to 2n for any n(n >= 2).

There exists a prime p for n < p < 2*n - 2 for all n <= 4. The less stricter form states that there exists a prime p. For n < p < 2*n for all n <= 2.

Examples:
For n = 4 and 2*n – 2 = 6,
5 is a prime number in the range (4, 6).

For n = 5 and 2*n – 2 = 8,
7 is a prime number in the range (5, 8).

For n = 6 and 2*n – 2 = 10,
7 is a prime number in the range (6, 10).



For n = 7 and 2*n – 2 = 12,
11 is a prime number in the range (7, 12).

For n = 8 and 2*n – 2 = 14,
11 is a prime number in the range (8, 14).


Examples :

Input: n = 4
Output: Prime numbers in range (4, 6)
        5

Input: n = 5
Output: Prime numbers in range (5, 8)
        7

Input: n = 6
Output: Prime numbers in range (6, 10)
        7

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP code to verify Bertrand's postulate
// for a given n.
#include <bits/stdc++.h>
using namespace std;
  
bool isprime(int n)
{
    // check whether a number is prime or not
    for (int i = 2; i * i <= n; i++)
        if (n % i == 0) // i is a factor of n
            return false;
    return true;
}
  
int main()
{
    int n = 10;
  
    // Checking Bertrand's postulate
    // Presence of prime numbers in range (n, 2n - 2)
    cout << "Prime numbers in range (" << n << ", " 
         << 2 * n - 2 << ")\n";
    for (int i = n + 1; i < 2 * n - 2; i++)
        if (isprime(i))
            cout << i << "\n";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to verify Bertrand's 
// postulate for a given n.
import java.io.*;
  
class GFG 
{
static boolean isprime(int n)
{
    // check whether a number
    // is prime or not
    for (int i = 2; i * i <= n; i++)
        if (n % i == 0) // i is a factor of n
            return false;
    return true;
}
  
    // Driver Code
    public static void main (String[] args) 
    {
        int n = 10;
  
        // Checking Bertrand's postulate
        // Presence of prime numbers in
        // range (n, 2n - 2)
        System.out.println("Prime numbers in range ("
                          n + ", "+ (2 * n - 2) + ")");
        for (int i = n + 1; i < 2 * n - 2; i++)
            if (isprime(i))
                System.out.println(i);
    }
}
  
// This code is contributed 
// by shiv_bhakt

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# PHP code to verify 
# Bertrand's postulate 
# for a given n.
def isprime(n):
      
    # check whether a number
    # is prime or not
    i = 2;
    while(i * i <= n):
        if (n % i == 0):
              
            # i is a factor of n
            return False;
        i = i + 1;
    return True;
  
# Driver Code
n = 10;
  
# Checking Bertrand's 
# postulate Presence 
# of prime numbers in
# range (n, 2n - 2)
print("Prime numbers in range (" , n , 
               ", ", 2 * n - 2 , ")");
i = n + 1;
while(i < (2 * n - 2)):
    if (isprime(i)):
        print(i);
    i = i + 1;
  
# This code is contributed by mits

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to verify Bertrand's 
// postulate for a given n.
using System;
  
class GFG
{
static bool isprime(int n)
{
    // check whether a number
    // is prime or not
    for (int i = 2; i * i <= n; i++)
        if (n % i == 0) // i is a factor of n
            return false;
    return true;
}
  
// Driver Code
public static void Main () 
{
    int n = 10;
  
    // Checking Bertrand's postulate
    // Presence of prime numbers in
    // range (n, 2n - 2)
    Console.WriteLine("Prime numbers in range ("
                     n + ", "+ (2 * n - 2) + ")");
    for (int i = n + 1; i < 2 * n - 2; i++)
        if (isprime(i))
            Console.WriteLine(i);
}
}
  
// This code is contributed 
// by shiv_bhakt

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP code to verify Bertrand's
// postulate for a given n.
function isprime($n)
{
    // check whether a number 
    // is prime or not
    for ($i = 2; $i * $i <= $n; $i++)
        if ($n % $i == 0) // i is a factor of n
            return false;
    return true;
}
  
// Driver Code
$n = 10;
  
// Checking Bertrand's postulate
// Presence of prime numbers in
// range (n, 2n - 2)
echo "Prime numbers in range (" , $n
             ", ", 2 * $n - 2 , ")\n";
for ($i = $n + 1; $i < 2 * $n - 2; $i++)
    if (isprime($i))
        echo $i , "\n";
  
// This code is contributed by ajit
?>

chevron_right


Output :

Prime numbers in range (10, 18)
11
13
17

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.