In simple QuickSort algorithm, we select an element as pivot, partition the array around a pivot and recur for subarrays on the left and right of the pivot.
Consider an array which has many redundant elements. For example, {1, 4, 2, 4, 2, 4, 1, 2, 4, 1, 2, 2, 2, 2, 4, 1, 4, 4, 4}. If 4 is picked as a pivot in Simple Quick Sort, we fix only one 4 and recursively process remaining occurrences.
The idea of 3 way Quick Sort is to process all occurrences of the pivot and is based on Dutch National Flag algorithm.
In 3 Way QuickSort, an array arr[l..r] is divided in 3 parts: a) arr[l..i] elements less than pivot. b) arr[i+1..j-1] elements equal to pivot. c) arr[j..r] elements greater than pivot.
Below is the implementation of the above algorithm.
C++
// C++ program for 3-way quick sort #include <bits/stdc++.h> using namespace std; /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ void partition( int a[], int l, int r, int & i, int & j) { i = l - 1, j = r; int p = l - 1, q = r; int v = a[r]; while ( true ) { // From left, find the first element greater than // or equal to v. This loop will definitely // terminate as v is last element while (a[++i] < v) ; // From right, find the first element smaller than // or equal to v while (v < a[--j]) if (j == l) break ; // If i and j cross, then we are done if (i >= j) break ; // Swap, so that smaller goes on left greater goes // on right swap(a[i], a[j]); // Move all same left occurrence of pivot to // beginning of array and keep count using p if (a[i] == v) { p++; swap(a[p], a[i]); } // Move all same right occurrence of pivot to end of // array and keep count using q if (a[j] == v) { q--; swap(a[j], a[q]); } } // Move pivot element to its correct index swap(a[i], a[r]); // Move all left same occurrences from beginning // to adjacent to arr[i] j = i - 1; for ( int k = l; k < p; k++, j--) swap(a[k], a[j]); // Move all right same occurrences from end // to adjacent to arr[i] i = i + 1; for ( int k = r - 1; k > q; k--, i++) swap(a[i], a[k]); } // 3-way partition based quick sort void quicksort( int a[], int l, int r) { if (r <= l) return ; int i, j; // Note that i and j are passed as reference partition(a, l, r, i, j); // Recur quicksort(a, l, j); quicksort(a, i, r); } // A utility function to print an array void printarr( int a[], int n) { for ( int i = 0; i < n; ++i) printf ( "%d " , a[i]); printf ( "\n" ); } // Driver code int main() { int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; int size = sizeof (a) / sizeof ( int ); // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); return 0; } |
C#
// C# program for 3-way quick sort using System; class GFG { // A function which is used to swap values static void swap<T>( ref T lhs, ref T rhs) { T temp; temp = lhs; lhs = rhs; rhs = temp; } /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ public static void partition( int [] a, int l, int r, ref int i, ref int j) { i = l - 1; j = r; int p = l - 1, q = r; int v = a[r]; while ( true ) { // From left, find the first element greater // than or equal to v. This loop will definitely // terminate as v is last element while (a[++i] < v) ; // From right, find the first element smaller // than or equal to v while (v < a[--j]) if (j == l) break ; // If i and j cross, then we are done if (i >= j) break ; // Swap, so that smaller goes on left greater // goes on right swap( ref a[i], ref a[j]); // Move all same left occurrence of pivot to // beginning of array and keep count using p if (a[i] == v) { p++; swap( ref a[p], ref a[i]); } // Move all same right occurrence of pivot to // end of array and keep count using q if (a[j] == v) { q--; swap( ref a[j], ref a[q]); } } // Move pivot element to its correct index swap( ref a[i], ref a[r]); // Move all left same occurrences from beginning // to adjacent to arr[i] j = i - 1; for ( int k = l; k < p; k++, j--) swap( ref a[k], ref a[j]); // Move all right same occurrences from end // to adjacent to arr[i] i = i + 1; for ( int k = r - 1; k > q; k--, i++) swap( ref a[i], ref a[k]); } // 3-way partition based quick sort public static void quicksort( int [] a, int l, int r) { if (r <= l) return ; int i = 0, j = 0; // Note that i and j are passed as reference partition(a, l, r, ref i, ref j); // Recur quicksort(a, l, j); quicksort(a, i, r); } // A utility function to print an array public static void printarr( int [] a, int n) { for ( int i = 0; i < n; ++i) Console.Write(a[i] + " " ); Console.Write( "\n" ); } // Driver code static void Main() { int [] a = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; int size = a.Length; // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); } // This code is contributed by DrRoot_ } |
4 9 4 4 1 9 4 4 9 4 4 1 4 1 1 4 4 4 4 4 4 4 4 9 9 9
Thanks to Utkarsh for suggesting above implementation.
Another Implementation using Dutch National Flag Algorithm
C++
// C++ program for 3-way quick sort #include <bits/stdc++.h> using namespace std; void swap( int * a, int * b) { int temp = *a; *a = *b; *b = temp; } // A utility function to print an array void printarr( int a[], int n) { for ( int i = 0; i < n; ++i) printf ( "%d " , a[i]); printf ( "\n" ); } /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ // It uses Dutch National Flag Algorithm void partition( int a[], int low, int high, int & i, int & j) { // To handle 2 elements if (high - low <= 1) { if (a[high] < a[low]) swap(&a[high], &a[low]); i = low; j = high; return ; } int mid = low; int pivot = a[high]; while (mid <= high) { if (a[mid] < pivot) swap(&a[low++], &a[mid++]); else if (a[mid] == pivot) mid++; else if (a[mid] > pivot) swap(&a[mid], &a[high--]); } // update i and j i = low - 1; j = mid; // or high+1 } // 3-way partition based quick sort void quicksort( int a[], int low, int high) { if (low >= high) // 1 or 0 elements return ; int i, j; // Note that i and j are passed as reference partition(a, low, high, i, j); // Recur two halves quicksort(a, low, i); quicksort(a, j, high); } // Driver Code int main() { int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; // int a[] = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, 64, // 11, 41}; int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // int a[] = {91, 82, 73, 64, 55, 46, 37, 28, 19, 10}; // int a[] = {4, 9, 4, 4, 9, 1, 1, 1}; int size = sizeof (a) / sizeof ( int ); // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); return 0; } |
C#
// C# program for 3-way quick sort using System; class GFG { // A function which is used to swap values static void swap<T>( ref T lhs, ref T rhs) { T temp; temp = lhs; lhs = rhs; rhs = temp; } // A utility function to print an array public static void printarr( int [] a, int n) { for ( int i = 0; i < n; ++i) Console.Write(a[i] + " " ); Console.Write( "\n" ); } /* This function partitions a[] in three parts a) a[l..i] contains all elements smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c) a[j..r] contains all elements greater than pivot */ // It uses Dutch National Flag Algorithm public static void partition( int [] a, int low, int high, ref int i, ref int j) { // To handle 2 elements if (high - low <= 1) { if (a[high] < a[low]) swap( ref a[high], ref a[low]); i = low; j = high; return ; } int mid = low; int pivot = a[high]; while (mid <= high) { if (a[mid] < pivot) swap( ref a[low++], ref a[mid++]); else if (a[mid] == pivot) mid++; else if (a[mid] > pivot) swap( ref a[mid], ref a[high--]); } // update i and j i = low - 1; j = mid; // or high+1 } // 3-way partition based quick sort public static void quicksort( int [] a, int low, int high) { if (low >= high) // 1 or 0 elements return ; int i = 0, j = 0; // Note that i and j are passed as reference partition(a, low, high, ref i, ref j); // Recur two halves quicksort(a, low, i); quicksort(a, j, high); } // Driver code static void Main() { int [] a = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 }; // int[] a = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, // 64, 11, 41}; int[] a = {1, 2, 3, 4, 5, 6, 7, 8, 9, // 10}; int[] a = {91, 82, 73, 64, 55, 46, 37, 28, // 19, 10}; int[] a = {4, 9, 4, 4, 9, 1, 1, 1}; int size = a.Length; // Function Call printarr(a, size); quicksort(a, 0, size - 1); printarr(a, size); } // This code is contributed by DrRoot_ } |
4 9 4 4 1 9 4 4 9 4 4 1 4 1 1 4 4 4 4 4 4 4 4 9 9 9
Thanks Aditya Goel for this implementation.
Reference:
http://algs4.cs.princeton.edu/lectures/23DemoPartitioning.pdf
http://www.sorting-algorithms.com/quick-sort-3-way
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.