Skip to content
Related Articles

Related Articles

Improve Article

3-Way QuickSort (Dutch National Flag)

  • Difficulty Level : Hard
  • Last Updated : 31 May, 2021
Geek Week

In simple QuickSort algorithm, we select an element as pivot, partition the array around a pivot and recur for subarrays on the left and right of the pivot. 
Consider an array which has many redundant elements. For example, {1, 4, 2, 4, 2, 4, 1, 2, 4, 1, 2, 2, 2, 2, 4, 1, 4, 4, 4}. If 4 is picked as a pivot in Simple Quick Sort, we fix only one 4 and recursively process remaining occurrences.
The idea of 3 way Quick Sort is to process all occurrences of the pivot and is based on Dutch National Flag algorithm. 

In 3 Way QuickSort, an array arr[l..r] is divided in 3 parts:
a) arr[l..i] elements less than pivot.
b) arr[i+1..j-1] elements equal to pivot.
c) arr[j..r] elements greater than pivot.

Below is the implementation of the above algorithm.

C++




// C++ program for 3-way quick sort
#include <bits/stdc++.h>
using namespace std;
 
/* This function partitions a[] in three parts
   a) a[l..i] contains all elements smaller than pivot
   b) a[i+1..j-1] contains all occurrences of pivot
   c) a[j..r] contains all elements greater than pivot */
void partition(int a[], int l, int r, int& i, int& j)
{
    i = l - 1, j = r;
    int p = l - 1, q = r;
    int v = a[r];
 
    while (true) {
        // From left, find the first element greater than
        // or equal to v. This loop will definitely
        // terminate as v is last element
        while (a[++i] < v)
            ;
 
        // From right, find the first element smaller than
        // or equal to v
        while (v < a[--j])
            if (j == l)
                break;
 
        // If i and j cross, then we are done
        if (i >= j)
            break;
 
        // Swap, so that smaller goes on left greater goes
        // on right
        swap(a[i], a[j]);
 
        // Move all same left occurrence of pivot to
        // beginning of array and keep count using p
        if (a[i] == v) {
            p++;
            swap(a[p], a[i]);
        }
 
        // Move all same right occurrence of pivot to end of
        // array and keep count using q
        if (a[j] == v) {
            q--;
            swap(a[j], a[q]);
        }
    }
 
    // Move pivot element to its correct index
    swap(a[i], a[r]);
 
    // Move all left same occurrences from beginning
    // to adjacent to arr[i]
    j = i - 1;
    for (int k = l; k < p; k++, j--)
        swap(a[k], a[j]);
 
    // Move all right same occurrences from end
    // to adjacent to arr[i]
    i = i + 1;
    for (int k = r - 1; k > q; k--, i++)
        swap(a[i], a[k]);
}
 
// 3-way partition based quick sort
void quicksort(int a[], int l, int r)
{
    if (r <= l)
        return;
 
    int i, j;
 
    // Note that i and j are passed as reference
    partition(a, l, r, i, j);
 
    // Recur
    quicksort(a, l, j);
    quicksort(a, i, r);
}
 
// A utility function to print an array
void printarr(int a[], int n)
{
    for (int i = 0; i < n; ++i)
        printf("%d  ", a[i]);
    printf("\n");
}
 
// Driver code
int main()
{
    int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 };
    int size = sizeof(a) / sizeof(int);
   
      // Function Call
    printarr(a, size);
    quicksort(a, 0, size - 1);
    printarr(a, size);
    return 0;
}

Java




// Java program for 3-way quick sort
import java.util.*;
class GFG
{
 
    static int i, j;
     
/* This function partitions a[] in three parts
   a) a[l..i] contains all elements smaller than pivot
   b) a[i+1..j-1] contains all occurrences of pivot
   c) a[j..r] contains all elements greater than pivot */
static void partition(int a[], int l, int r)
{
   
    i = l - 1; j = r;
    int p = l - 1, q = r;
    int v = a[r];
 
    while (true)
    {
       
        // From left, find the first element greater than
        // or equal to v. This loop will definitely
        // terminate as v is last element
        while (a[++i] < v)
            ;
 
        // From right, find the first element smaller than
        // or equal to v
        while (v < a[--j])
            if (j == l)
                break;
 
        // If i and j cross, then we are done
        if (i >= j)
            break;
 
        // Swap, so that smaller goes on left greater goes
        // on right
        int temp = a[i];
          a[i] = a[j];
          a[j] = temp;
 
        // Move all same left occurrence of pivot to
        // beginning of array and keep count using p
        if (a[i] == v) {
            p++;
            temp = a[i];
            a[i] = a[p];
            a[p] = temp;
 
        }
 
        // Move all same right occurrence of pivot to end of
        // array and keep count using q
        if (a[j] == v) {
            q--;
            temp = a[q];
            a[q] = a[j];
            a[j] = temp;
        }
    }
 
    // Move pivot element to its correct index
    int temp = a[i];
      a[i] = a[r];
      a[r] = temp;
   
    // Move all left same occurrences from beginning
    // to adjacent to arr[i]
    j = i - 1;
    for (int k = l; k < p; k++, j--)
    {
        temp = a[k];
          a[k] = a[j];
          a[j] = temp;
    }
   
    // Move all right same occurrences from end
    // to adjacent to arr[i]
    i = i + 1;
    for (int k = r - 1; k > q; k--, i++)
    {
        temp = a[i];
          a[i] = a[k];
          a[k] = temp;
    }
}
 
// 3-way partition based quick sort
static void quicksort(int a[], int l, int r)
{
    if (r <= l)
        return;
 
   i = 0; j = 0;
 
    // Note that i and j are passed as reference
    partition(a, l, r);
 
    // Recur
    quicksort(a, l, j);
    quicksort(a, i, r);
}
 
// A utility function to print an array
static void printarr(int a[], int n)
{
    for (int i = 0; i < n; ++i)
        System.out.printf("%d  ", a[i]);
    System.out.printf("\n");
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 };
    int size = a.length;
   
      // Function Call
    printarr(a, size);
    quicksort(a, 0, size - 1);
    printarr(a, size);
}
}
 
// This code is contributed by Rajput-Ji

C#




// C# program for 3-way quick sort
using System;
 
class GFG {
    // A function which is used to swap values
    static void swap<T>(ref T lhs, ref T rhs)
    {
        T temp;
        temp = lhs;
        lhs = rhs;
        rhs = temp;
    }
    /* This function partitions a[] in three parts
       a) a[l..i] contains all elements smaller than pivot
       b) a[i+1..j-1] contains all occurrences of pivot
       c) a[j..r] contains all elements greater than pivot
     */
    public static void partition(int[] a, int l, int r,
                                 ref int i, ref int j)
    {
        i = l - 1;
        j = r;
        int p = l - 1, q = r;
        int v = a[r];
 
        while (true) {
            // From left, find the first element greater
            // than or equal to v. This loop will definitely
            // terminate as v is last element
            while (a[++i] < v)
                ;
 
            // From right, find the first element smaller
            // than or equal to v
            while (v < a[--j])
                if (j == l)
                    break;
 
            // If i and j cross, then we are done
            if (i >= j)
                break;
 
            // Swap, so that smaller goes on left greater
            // goes on right
            swap(ref a[i], ref a[j]);
 
            // Move all same left occurrence of pivot to
            // beginning of array and keep count using p
            if (a[i] == v) {
                p++;
                swap(ref a[p], ref a[i]);
            }
 
            // Move all same right occurrence of pivot to
            // end of array and keep count using q
            if (a[j] == v) {
                q--;
                swap(ref a[j], ref a[q]);
            }
        }
 
        // Move pivot element to its correct index
        swap(ref a[i], ref a[r]);
 
        // Move all left same occurrences from beginning
        // to adjacent to arr[i]
        j = i - 1;
        for (int k = l; k < p; k++, j--)
            swap(ref a[k], ref a[j]);
 
        // Move all right same occurrences from end
        // to adjacent to arr[i]
        i = i + 1;
        for (int k = r - 1; k > q; k--, i++)
            swap(ref a[i], ref a[k]);
    }
 
    // 3-way partition based quick sort
    public static void quicksort(int[] a, int l, int r)
    {
        if (r <= l)
            return;
 
        int i = 0, j = 0;
 
        // Note that i and j are passed as reference
        partition(a, l, r, ref i, ref j);
 
        // Recur
        quicksort(a, l, j);
        quicksort(a, i, r);
    }
 
    // A utility function to print an array
    public static void printarr(int[] a, int n)
    {
        for (int i = 0; i < n; ++i)
            Console.Write(a[i] + " ");
        Console.Write("\n");
    }
 
    // Driver code
    static void Main()
    {
        int[] a = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 };
        int size = a.Length;
         
          // Function Call
          printarr(a, size);
        quicksort(a, 0, size - 1);
        printarr(a, size);
    }
    // This code is contributed by DrRoot_
}

Javascript




<script>
// javascript program for 3-way quick sort
 
    var i, j;
 
    /*
     * This function partitions a in three parts a) a[l..i] contains all elements
     * smaller than pivot b) a[i+1..j-1] contains all occurrences of pivot c)
     * a[j..r] contains all elements greater than pivot
     */
    function partition(a , l , r) {
 
        i = l - 1;
        j = r;
        var p = l - 1, q = r;
        var v = a[r];
 
        while (true) {
 
            // From left, find the first element greater than
            // or equal to v. This loop will definitely
            // terminate as v is last element
            while (a[++i] < v)
                ;
 
            // From right, find the first element smaller than
            // or equal to v
            while (v < a[--j])
                if (j == l)
                    break;
 
            // If i and j cross, then we are done
            if (i >= j)
                break;
 
            // Swap, so that smaller goes on left greater goes
            // on right
            var temp = a[i];
            a[i] = a[j];
            a[j] = temp;
 
            // Move all same left occurrence of pivot to
            // beginning of array and keep count using p
            if (a[i] == v) {
                p++;
                temp = a[i];
                a[i] = a[p];
                a[p] = temp;
 
            }
 
            // Move all same right occurrence of pivot to end of
            // array and keep count using q
            if (a[j] == v) {
                q--;
                temp = a[q];
                a[q] = a[j];
                a[j] = temp;
            }
        }
 
        // Move pivot element to its correct index
        var temp = a[i];
        a[i] = a[r];
        a[r] = temp;
 
        // Move all left same occurrences from beginning
        // to adjacent to arr[i]
        j = i - 1;
        for (k = l; k < p; k++, j--) {
            temp = a[k];
            a[k] = a[j];
            a[j] = temp;
        }
 
        // Move all right same occurrences from end
        // to adjacent to arr[i]
        i = i + 1;
        for (k = r - 1; k > q; k--, i++) {
            temp = a[i];
            a[i] = a[k];
            a[k] = temp;
        }
    }
 
    // 3-way partition based quick sort
    function quicksort(a , l , r) {
        if (r <= l)
            return;
 
        i = 0;
        j = 0;
 
        // Note that i and j are passed as reference
        partition(a, l, r);
 
        // Recur
        quicksort(a, l, j);
        quicksort(a, i, r);
    }
 
    // A utility function to prvar an array
    function printarr(a , n) {
        for (i = 0; i < n; ++i)
            document.write(" "+ a[i]);
        document.write("<br/>");
    }
 
    // Driver code   
        var a = [ 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 ];
        var size = a.length;
 
        // Function Call
        printarr(a, size);
        quicksort(a, 0, size - 1);
        printarr(a, size);
// This code contributed by aashish1995
</script>
Output
4  9  4  4  1  9  4  4  9  4  4  1  4  
1  1  4  4  4  4  4  4  4  4  9  9  9  

Thanks to Utkarsh for suggesting above implementation.

Another Implementation using Dutch National Flag Algorithm



C++




// C++ program for 3-way quick sort
#include <bits/stdc++.h>
using namespace std;
 
void swap(int* a, int* b)
{
    int temp = *a;
    *a = *b;
    *b = temp;
}
 
// A utility function to print an array
void printarr(int a[], int n)
{
    for (int i = 0; i < n; ++i)
        printf("%d ", a[i]);
    printf("\n");
}
 
/* This function partitions a[] in three parts
a) a[l..i] contains all elements smaller than pivot
b) a[i+1..j-1] contains all occurrences of pivot
c) a[j..r] contains all elements greater than pivot */
 
// It uses Dutch National Flag Algorithm
void partition(int a[], int low, int high, int& i, int& j)
{
    // To handle 2 elements
    if (high - low <= 1) {
        if (a[high] < a[low])
            swap(&a[high], &a[low]);
        i = low;
        j = high;
        return;
    }
 
    int mid = low;
    int pivot = a[high];
    while (mid <= high) {
        if (a[mid] < pivot)
            swap(&a[low++], &a[mid++]);
        else if (a[mid] == pivot)
            mid++;
        else if (a[mid] > pivot)
            swap(&a[mid], &a[high--]);
    }
 
    // update i and j
    i = low - 1;
    j = mid; // or high+1
}
 
// 3-way partition based quick sort
void quicksort(int a[], int low, int high)
{
    if (low >= high) // 1 or 0 elements
        return;
 
    int i, j;
 
    // Note that i and j are passed as reference
    partition(a, low, high, i, j);
 
    // Recur two halves
    quicksort(a, low, i);
    quicksort(a, j, high);
}
 
// Driver Code
int main()
{
    int a[] = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 };
    // int a[] = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64, 64,
    // 11, 41}; int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
    // int a[] = {91, 82, 73, 64, 55, 46, 37, 28, 19, 10};
    // int a[] = {4, 9, 4, 4, 9, 1, 1, 1};
    int size = sizeof(a) / sizeof(int);
 
    // Function Call
    printarr(a, size);
    quicksort(a, 0, size - 1);
    printarr(a, size);
    return 0;
}

C#




// C# program for 3-way quick sort
using System;
 
class GFG {
    // A function which is used to swap values
    static void swap<T>(ref T lhs, ref T rhs)
    {
        T temp;
        temp = lhs;
        lhs = rhs;
        rhs = temp;
    }
 
    // A utility function to print an array
    public static void printarr(int[] a, int n)
    {
        for (int i = 0; i < n; ++i)
            Console.Write(a[i] + " ");
        Console.Write("\n");
    }
 
    /* This function partitions a[] in three parts
    a) a[l..i] contains all elements smaller than pivot
    b) a[i+1..j-1] contains all occurrences of pivot
    c) a[j..r] contains all elements greater than pivot */
 
    // It uses Dutch National Flag Algorithm
    public static void partition(int[] a, int low, int high,
                                 ref int i, ref int j)
    {
        // To handle 2 elements
        if (high - low <= 1) {
            if (a[high] < a[low])
                swap(ref a[high], ref a[low]);
            i = low;
            j = high;
            return;
        }
 
        int mid = low;
        int pivot = a[high];
        while (mid <= high) {
            if (a[mid] < pivot)
                swap(ref a[low++], ref a[mid++]);
            else if (a[mid] == pivot)
                mid++;
            else if (a[mid] > pivot)
                swap(ref a[mid], ref a[high--]);
        }
 
        // update i and j
        i = low - 1;
        j = mid; // or high+1
    }
 
    // 3-way partition based quick sort
    public static void quicksort(int[] a, int low, int high)
    {
        if (low >= high) // 1 or 0 elements
            return;
 
        int i = 0, j = 0;
 
        // Note that i and j are passed as reference
        partition(a, low, high, ref i, ref j);
 
        // Recur two halves
        quicksort(a, low, i);
        quicksort(a, j, high);
    }
 
    // Driver code
    static void Main()
    {
        int[] a = { 4, 9, 4, 4, 1, 9, 4, 4, 9, 4, 4, 1, 4 };
        // int[] a = {4, 39, 54, 14, 31, 89, 44, 34, 59, 64,
        // 64, 11, 41}; int[] a = {1, 2, 3, 4, 5, 6, 7, 8, 9,
        // 10}; int[] a = {91, 82, 73, 64, 55, 46, 37, 28,
        // 19, 10}; int[] a = {4, 9, 4, 4, 9, 1, 1, 1};
        int size = a.Length;
         
          // Function Call
        printarr(a, size);
        quicksort(a, 0, size - 1);
        printarr(a, size);
    }
    // This code is contributed by DrRoot_
}
Output
4 9 4 4 1 9 4 4 9 4 4 1 4 
1 1 4 4 4 4 4 4 4 4 9 9 9 

Thanks Aditya Goel for this implementation.
Reference: 
http://algs4.cs.princeton.edu/lectures/23DemoPartitioning.pdf 
http://www.sorting-algorithms.com/quick-sort-3-way
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :