Given a binary string S, the task is to write a program for DFA Machine that accepts a string with odd numbers of 0s and 1s.
Examples:
Input: S = “010011”
Output: Accepted
Explanation:
The given string S contains odd number of zeros and ones.
Input: S = “00000”
Output: Not Accepted
Explanation:
The given string S doesn’t contains odd number of zeros and ones.
Approach: Below is the designed DFA Machine for the given problem. Construct a transition table for DFA states and analyze the transitions between each state. Below are the steps:

- There are 4 states q0, q1, q2, q3 where q0 is the initial state and q3 is the final state.
- The transition table of the above DFA is as follows:
Current state |
Final state |
0 |
1 |
q0 |
q1 |
q2 |
q1 |
q0 |
q3 |
q2 |
q3 |
q0 |
q3 |
q2 |
q1 |
- Through this table, understand the transitions in the DFA.
- If the final state(q3) is reached after reading the whole string, then the string is accepted otherwise not-accepted.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void checkValidDFA(string s)
{
int initial_state = 0;
int final_state;
int previous_state = 0;
for ( int i = 0; i < s.length(); i++) {
if ((s[i] == '0'
&& previous_state == 0)
|| (s[i] == '1'
&& previous_state == 3)) {
final_state = 1;
}
else if ((s[i] == '0'
&& previous_state == 3)
|| (s[i] == '1'
&& previous_state == 0)) {
final_state = 2;
}
else if ((s[i] == '0'
&& previous_state == 1)
|| (s[i] == '1'
&& previous_state == 2)) {
final_state = 0;
}
else if ((s[i] == '0'
&& previous_state == 2)
|| (s[i] == '1'
&& previous_state == 1)) {
final_state = 3;
}
previous_state = final_state;
}
if (final_state == 3) {
cout << "Accepted" << endl;
}
else {
cout << "Not Accepted" << endl;
}
}
int main()
{
string s = "010011" ;
checkValidDFA(s);
return 0;
}
|
Python3
def checkValidDFA(s):
initial_state = 0
final_state = 0
previous_state = 0
for i in range ( len (s)):
if ((s[i] = = '0' and previous_state = = 0 ) or
(s[i] = = '1' and previous_state = = 3 )):
final_state = 1
elif ((s[i] = = '0' and previous_state = = 3 ) or
(s[i] = = '1' and previous_state = = 0 )):
final_state = 2
elif ((s[i] = = '0' and previous_state = = 1 ) or
(s[i] = = '1' and previous_state = = 2 )):
final_state = 0
elif ((s[i] = = '0' and previous_state = = 2 ) or
(s[i] = = '1' and previous_state = = 1 )):
final_state = 3
previous_state = final_state
if (final_state = = 3 ):
print ( "Accepted" )
else :
print ( "Not Accepted" )
if __name__ = = '__main__' :
s = "010011"
checkValidDFA(s)
|
Java
import java.util.*;
class GFG{
static void checkValidDFA(String s)
{
int initial_state = 0 ;
int final_state = 0 ;
int previous_state = 0 ;
for ( int i = 0 ; i < s.length(); i++)
{
if ((s.charAt(i) == '0' && previous_state == 0 ) ||
(s.charAt(i) == '1' && previous_state == 3 ))
{
final_state = 1 ;
}
else if ((s.charAt(i) == '0' && previous_state == 3 ) ||
(s.charAt(i) == '1' && previous_state == 0 ))
{
final_state = 2 ;
}
else if ((s.charAt(i) == '0' && previous_state == 1 ) ||
(s.charAt(i) == '1' && previous_state == 2 ))
{
final_state = 0 ;
}
else if ((s.charAt(i) == '0' && previous_state == 2 ) ||
(s.charAt(i) == '1' && previous_state == 1 ))
{
final_state = 3 ;
}
previous_state = final_state;
}
if (final_state == 3 )
{
System.out.println( "Accepted" );
}
else
{
System.out.println( "Not Accepted" );
}
}
public static void main(String args[])
{
String s = "010011" ;
checkValidDFA(s);
}
}
|
C#
using System;
class GFG{
static void checkValidDFA( string s)
{
int final_state = 0;
int previous_state = 0;
for ( int i = 0; i < s.Length; i++)
{
if ((s[i] == '0' && previous_state == 0) ||
(s[i] == '1' && previous_state == 3))
{
final_state = 1;
}
else if ((s[i] == '0' && previous_state == 3) ||
(s[i] == '1' && previous_state == 0))
{
final_state = 2;
}
else if ((s[i] == '0' && previous_state == 1) ||
(s[i] == '1' && previous_state == 2))
{
final_state = 0;
}
else if ((s[i] == '0' && previous_state == 2) ||
(s[i] == '1' && previous_state == 1))
{
final_state = 3;
}
previous_state = final_state;
}
if (final_state == 3)
{
Console.WriteLine( "Accepted" );
}
else
{
Console.WriteLine( "Not Accepted" );
}
}
public static void Main()
{
string s = "010011" ;
checkValidDFA(s);
}
}
|
Javascript
<script>
function checkValidDFA(s) {
var final_state = 0;
var previous_state = 0;
for ( var i = 0; i < s.length; i++) {
if (
(s[i] === "0" && previous_state === 0) ||
(s[i] === "1" && previous_state === 3)
) {
final_state = 1;
} else if (
(s[i] === "0" && previous_state === 3) ||
(s[i] === "1" && previous_state === 0)
) {
final_state = 2;
} else if (
(s[i] === "0" && previous_state === 1) ||
(s[i] === "1" && previous_state === 2)
) {
final_state = 0;
} else if (
(s[i] === "0" && previous_state === 2) ||
(s[i] === "1" && previous_state === 1)
) {
final_state = 3;
}
previous_state = final_state;
}
if (final_state === 3) {
document.write( "Accepted" );
}
else {
document.write( "Not Accepted" );
}
}
var s = "010011" ;
checkValidDFA(s);
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
07 Jun, 2021
Like Article
Save Article