Program to check if a number is divisible by any of its digits

Given an integer N where 1 \leq n \leq 10^{18}. The task is to check whether the number is not divisible by any of its digit. If the given number N is divisible by any of its digits then print “YES” else print “NO”.

Examples:

Input : N = 5115
Output : YES
Explanation: 5115 is divisible by both 1 and 5.
So print YES.

Input : 27
Output : NO
Explanation: 27 is not divisible by 2 or 7

Approach : The idea to solve the problem is to extract the digits of the number one by one and check if the number is divisible by any of its digit. If it is divisible by any of it’s digit then print YES otherwise print NO.



Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP implementation of above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to check if given number is divisible
// by any of its digits
string isDivisible(long long int n)
{
    long long int temp = n;
  
    // check if any of digit divides n
    while (n) {
        int k = n % 10;
  
        // check if K divides N
        if (temp % k == 0)
            return "YES";
  
        n /= 10;
    }
  
    return "NO";
}
  
// Driver Code
int main()
{
    long long int n = 9876543;
  
    cout << isDivisible(n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach
  
class GFG 
{
  
    // Function to check if given number is divisible
    // by any of its digits
    static String isDivisible(int n) 
    {
        int temp = n;
  
        // check if any of digit divides n
        while (n > 0)
        {
            int k = n % 10;
  
            // check if K divides N
            if (temp % k == 0)
            {
                return "YES";
            }
            n /= 10;
        }
  
        return "NO";
    }
  
    // Driver Code
    public static void main(String[] args) 
    {
        int n = 9876543;
        System.out.println(isDivisible(n));
    }
  
// This code is contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program implementation of above approach
  
# Function to check if given number is 
# divisible by any of its digits
def isDivisible(n):
    temp = n
  
    # check if any of digit divides n
    while(n):
        k = n % 10
  
        # check if K divides N
        if(temp % k == 0):
            return "YES"
  
        n /= 10;
  
    # Number is not divisible by 
    # any of digits
    return "NO"
  
# Driver Code
n = 9876543
print(isDivisible(n))
  
# This code is contributed by
# Sanjit_Prasad

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach
using System;
  
class GFG 
{
  
    // Function to check if given number is divisible
    // by any of its digits
    static String isDivisible(int n) 
    {
        int temp = n;
  
        // check if any of digit divides n
        while (n > 0)
        {
            int k = n % 10;
  
            // check if K divides N
            if (temp % k == 0)
            {
                return "YES";
            }
            n /= 10;
        }
  
        return "NO";
    }
  
    // Driver Code
    public static void Main(String[] args) 
    {
        int n = 9876543;
        Console.WriteLine(isDivisible(n));
    }
}
  
// This code is contributed by PrinciRaj1992

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of above approach 
  
// Function to check if given number 
// is divisible by any of its digits 
function isDivisible($n
    $temp = $n
  
    // check if any of digit divides n 
    while ($n
    
        $k = $n % 10; 
  
        // check if K divides N 
        if ($temp % $k == 0) 
            return "YES"
  
        $n = floor($n / 10); 
    
  
    return "NO"
  
// Driver Code 
$n = 9876543; 
  
echo isDivisible($n); 
  
// This code is contributed by Ryuga
?>

chevron_right


Output:

YES

Time Complexity: O(log(N))
Auxiliary Space: O(1)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.