# Probability of finding an element K in a Singly Linked List

Given a Singly Linked List of size N and another key K, we have to find the probability that the key K is present in the Singly Linked List.

Examples:

Input: Linked list = 2 -> 3 -> 3 -> 3 -> 4 -> 2, Key = 5
Output: 0
Explanation:
Since the value of Key is 5 which is not present in List, the probability of finding the Key in the Linked List is 0.

Input: Linked list = 2 -> 3 -> 5 -> 1 -> 9 -> 8 -> 0 -> 7 -> 6 -> 5, Key = 5
Output: 0.2

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:
The probability of finding a Key element K in a Singly Linked List is given below:

Probability = Number of Occurrences of Element K / Size of the Linked List

In our approach, we will first count the number of Element K present in the Singly Linked List and then the probability will be calculated by dividing the number of occurrences of K with the size of the Singly Linked List.

Below is the implementation of the above approach:

## C

 `// C code to find the probability ` `// of finding an Element ` `// in a Singly Linked List ` ` `  `#include ` `#include ` ` `  `// Link list node ` `struct` `Node { ` `    ``int` `data; ` `    ``struct` `Node* next; ` `}; ` ` `  `/* Given a reference (pointer to pointer) ` `   ``to the head of a list and an int, ` `   ``push a new node on the front of the list. */` `void` `push(``struct` `Node** head_ref, ``int` `new_data) ` `{ ` `    ``// allocate node ` `    ``struct` `Node* new_node ` `        ``= (``struct` `Node*)``malloc``( ` `            ``sizeof``(``struct` `Node)); ` ` `  `    ``// put in the data ` `    ``new_node->data = new_data; ` ` `  `    ``// link the old list off the new node ` `    ``new_node->next = (*head_ref); ` ` `  `    ``// move the head to point to the new node ` `    ``(*head_ref) = new_node; ` `} ` ` `  `// Counts nnumber of nodes in linked list ` `int` `getCount(``struct` `Node* head) ` `{ ` ` `  `    ``// Initialize count ` `    ``int` `count = 0; ` ` `  `    ``// Initialize current ` `    ``struct` `Node* current = head; ` ` `  `    ``while` `(current != NULL) { ` `        ``count++; ` `        ``current = current->next; ` `    ``} ` `    ``return` `count; ` `} ` ` `  `float` `kPresentProbability( ` `    ``struct` `Node* head, ` `    ``int` `n, ``int` `k) ` `{ ` ` `  `    ``// Initialize count ` `    ``float` `count = 0; ` ` `  `    ``// Initialize current ` `    ``struct` `Node* current = head; ` ` `  `    ``while` `(current != NULL) { ` `        ``if` `(current->data == k) ` `            ``count++; ` `        ``current = current->next; ` `    ``} ` `    ``return` `count / n; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``// Start with the empty list ` `    ``struct` `Node* head = NULL; ` ` `  `    ``// Use push() to construct below list ` `    ``// 1->2->1->3->1 ` `    ``push(&head, 2); ` `    ``push(&head, 3); ` `    ``push(&head, 5); ` `    ``push(&head, 1); ` `    ``push(&head, 9); ` `    ``push(&head, 8); ` `    ``push(&head, 0); ` `    ``push(&head, 7); ` `    ``push(&head, 6); ` `    ``push(&head, 5); ` ` `  `    ``printf``(``"%.1f"``, ` `           ``kPresentProbability( ` `               ``head, getCount(head), 5)); ` ` `  `    ``return` `0; ` `} `

## Python3

 `# Python3 code to find the probability  ` `# of finding an Element  ` `# in a Singly Linked List  ` ` `  `# Node class ` `class` `Node: ` `     `  `    ``def` `__init__(``self``, data, ``next` `=` `None``): ` `         `  `        ``self``.data ``=` `data ` `        ``self``.``next` `=` `None` ` `  `class` `LinkedList: ` `     `  `    ``def` `__init__(``self``): ` `         `  `        ``self``.head ``=` `None` `     `  `    ``def` `push(``self``, data): ` `         `  `        ``# Allocate the Node &  ` `        ``# put the data ` `        ``new_node ``=` `Node(data) ` `         `  `        ``# Make the next of new Node as head ` `        ``new_node.``next` `=` `self``.head ` `         `  `        ``# Move the head to point to new Node ` `        ``self``.head ``=` `new_node ` ` `  `    ``# Counts the number of nodes in linkedlist ` `    ``def` `getCount(``self``): ` `         `  `        ``# Initialize current ` `        ``current ``=` `self``.head ` `         `  `        ``# Initialize count ` `        ``count ``=` `0` `         `  `        ``while` `current ``is` `not` `None``: ` `            ``count ``+``=` `1` `            ``current ``=` `current.``next` `         `  `        ``return` `count ` `     `  `    ``def` `kPresentProbability(``self``, n, k): ` `         `  `        ``# Initialize current ` `        ``current ``=` `self``.head ` `         `  `        ``# Initialize count ` `        ``count ``=` `0.0` `         `  `        ``while` `current ``is` `not` `None``: ` `            ``if` `current.data ``=``=` `k: ` `                ``count ``+``=` `1` `                 `  `            ``current ``=` `current.``next` `         `  `        ``return` `count ``/` `n ` `     `  `# Driver Code ` `if` `__name__ ``=``=` `"__main__"``: ` `     `  `    ``# Start with empty list ` `    ``llist ``=` `LinkedList() ` `     `  `    ``# Use push to construct the linked list ` `    ``llist.push(``2``) ` `    ``llist.push(``3``) ` `    ``llist.push(``5``) ` `    ``llist.push(``1``) ` `    ``llist.push(``9``) ` `    ``llist.push(``8``) ` `    ``llist.push(``0``) ` `    ``llist.push(``7``) ` `    ``llist.push(``6``) ` `    ``llist.push(``5``) ` `     `  `    ``print``(llist.kPresentProbability( ` `          ``llist.getCount(), ``5``)) ` `     `  `# This code is contributed by kevalshah5     `

Output:

```0.2
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : kevalshah5