Log Table or Logarithmic Table is used to make complex calculations easy. Calculating a logarithm problem without a log table is a very frustrating task.
Let’s learn the method of calculating logs using Logarithm Tables.
Table of Content
What is a Log Table?
Log Table in math is a reference tool used to ease computations using logarithmic functions. It usually provides precomputed logarithm values for various integers, commonly in a base like 10 or the natural logarithm base (e â‰ˆ 2.71828). Log tables allow users to obtain the logarithm of a given number without completing difficult computations by hand, as the logarithmic value may be read straight from the table.
As “log” is the short form of “logarithm,” log tables are also called tables of logarithms or logarithmic tables. Each entry in the table is generally the logarithm of a specific integer with a specific base. Using the table, one may turn a multiplication or division issue into an addition or subtraction operation, assisting in the more efficient and iterative solution of equations, mathematical problems, and computations requiring exponential relationships.
Log Table Definition
In mathematics, a log table is a reference tool used to calculate the logarithm of an integer. It consists of a list of values, each of which corresponds to the logarithm of a certain integer. Before calculators and computers, log tables were commonly employed to simplify difficult arithmetic computations requiring exponentiation and multiplication by translating them into simpler addition and subtraction operations using logarithmic principles.
Log Table 1 to 100
We have included a table of log values for base 10.
How to use Log Table
Students must grasp how to interpret a log table in order to get the log value of a number. Using an example, we have presented a stepbystep procedure for determining the values:
Step 1: Determine the base for the table.
A distinct log table is utilized for each of the bases. The preceding table is for base 10. As a result, only the log value of a number to the base 10 may be found. Students will need to consult a separate table to determine Natural Logarithms or Binary Logarithms.
Step 2: Determine the whole number’s integer and decimal components.
Assume we wish to calculate the log of n = 22.35. So, first and foremost, we remove the integer from the decimal.
Integer Part: 22
Decimal Part: 35Step 3: Return to the common log table and search for the cell value at the intersections.
The row is tagged with the first two digits of n, whereas the column header is labelled with the third digit of n.
â‡’ Log_{10}(22.35) row 22, column 3 cell value 3483. As a result, the result is 3483.
Step 4: Always use a mean difference with the Common Logarithm table.
Return to the mean difference table and find row 22 and column 5 (fourth digit of n).
â‡’ Log_{10}(22.35) row 22, mean difference column 5 cell value 10 is used in this example. Make a note of the equivalent value, which is 10.
Step 5: Combine the values acquired in steps 3 and 4.
This equals 3483 + 10= 3493.
Step 6: Locate the characteristic part.
Find the integer value of p such that a^{p} < n and a^{p+1} > nÂ through trial and error. Here, a is the base and p is the characteristic part. Simply count the amount of digits remaining in the decimal and remove one for common (base 10) logs.
So, characteristic part = Total number of digits to the left of the decimal â€“ 1
In this case, characteristic part = 2 – 1 = 1
Step 7: Combine the characteristic and mantissa.
By combining the characteristic and the Mantissa portion, students will obtain the final value of 1.3493.
So, log_{10} (22.35) = 1.3493.
How to Calculate the Log?
Each item in a log table is made up of two parts: the characteristic and the mantissa. These components help us find the true value of a logarithm for a given logarithmic value. Any Logarithmic value can be represented as
Log of any number = Characteristic + Mantissa
Let’s discuss these components in much detail.
Characteristic
The logarithm’s integral portion has this property. It shows the location of the decimal point in the resultant logarithmic value for a particular logarithm. In other words, it represents the number’s order of magnitude.Â
In mathematical terms, if you have a number “N” expressed in scientific notation as “N = M Ã— 10^{k},” where “M” is a number greater than or equal to 1 and less than 10, and “k” is an integer exponent, then the characteristic is “k.”
Characteristic of the logarithm of a number is determined by its position in scientific notation and can be either positive or negative. If the number is greater than 1, the characteristic is found by counting the digits to the left of the decimal point minus one. If the number is less than 1, the characteristic is calculated by counting the zeros immediately following the decimal point, negating the result, and subtracting one. For example,
 If log(500) = 2.698, then the characteristic is 2.
 If log(1000) = 3.0, then the characteristic is 3.
 If log(0.01) = 2.0, then the characteristic is 2.
 If log x = 14.31 = 1.431 Ã— 10^{1}, then the characteristic is 1.
Mantissa
The mantissa is the fractional part of result of any logarithm. When paired with the characteristic, it completes the logarithmic value. It is commonly represented as a decimal with numerous decimal places in the log table. Mantissa is always positive and can be calculated with the help of log table, which we will learn in the article further.
 If log(500) = 2.698, then the mantissa here is 698.
 If log(1000) = 3.0, then the mantissa is 0.
 If log(0.01) = 2.0, then the mantissa is 0.
 If log x = 14.31 = 1.431 Ã— 10^{1}, then the mantissa is 431.
Logarithmic Table 1 To 10
Common logarithm tables offer logarithms to the base 10, commonly known as base10 logarithms or decimal logarithms.
The following are the common log tables 1 through 10:
Common Logarithm to a Number (log_{10}x) 
Log Values 

Log Table from 1 To 10 values 

log 1 
0 
log 2 
0.3010 
log 3 
0.4771 
log 4 
0.6020 
log 5 
0.6989 
log 6 
0.7781 
log 7 
0.8450 
log 8 
0.9030 
log 9 
0.9542 
log 10 
1 
In this section, we will list the log values for log_{10 }from 1 to 10 in tabular style.
Natural Log Table for 1 To 10
Natural logarithm tables give logarithms to the base “e,” where “e” is the mathematical constant 2.71828. These logarithms are also known as natural logarithms or exponential logarithms. Natural logarithms are utilised in mathematics, particularly in calculus and statistics. The following are the natural log tables 1 through 10:
Natural Log Table for 1 To 10 Values 


Natural Logarithm to a Number (log_{e}x) 
Log Values 
In (1) 
0 
In (2) 
0.693147 
In (3) 
1.098612 
In (4) 
1.386294 
In (5) 
1.609438 
In (6) 
1.791759 
In (7) 
1.94591 
In (8) 
2.079442 
In (9) 
2.197225 
In (10) 
2.302585 
In this section, we will list the log values for log_{e }from 1 to 10 in tabular style.
Log and Antilog Table
The key differences between both log and antilog tables are listed in the following table:
Comparing Log and Antilog Table 


Parameter  Log Table  Antilog Table 
Purpose  Used to find logarithms of numbers.  Used to find antilogarithms (exponentials) of numbers. 
Input  Typically contains logarithms of numbers.  Typically contains antilogarithms of numbers. 
Example Entry  log_{10}(2) = 0.3010  antilog_{10}(0.3010) = 2.00 
Common Base  Commonly base 10 (log_{10}) and e (Euler’s Number)  Commonly base 10 (antilog_{10}) and e (Euler’s Number) 
Use Cases  Used for simplifying multiplication and division.  Used for simplifying exponentiation and power calculations. 
Table Contents  Contains logarithmic values for various numbers, typically arranged in a tabular format.  Contains antilogarithmic values for various logarithmic values, typically arranged in a tabular format. 
Log Table PDF
The team at GeeksforGeeks created this log table PDF to help students find the various values of logarithm during their complex calculations. This log table PDF provides reference for quickly finding antilogarithm values.
You can download the PDF version of this log table: Log Table PDF
Read More,
Log Table Solved Examples
Example 1: A log table is used to compute the logarithms of various values. Determine their characteristicsÂ and mantissa if log x = 3.4606.
Solution:
We know that a number’s logarithm is the sum of its characteristicsÂ and mantissa. However, keep in mind that the mantissa is always positive.
log x = 3.4606
log x = 3 – 0.4606
However, mantissa cannot be negative. So we add and subtract 1.Â
log x = (3 – 1) + (1 – 0.4606)Â
log x = 4 + 0.5394Â
Thus, log x = characteristic + mantissa
As a result, the characteristic is 4 and the mantissa is 0.5394.
Example 2: Determine the value of log_{10} 5.632.
Solution:
To find the common logarithm of the number 5.632 we need to evaluate characteristic and mantissa and add them together.
To find mantissa find the row labeled “56” and the column “3” in the log table.
The intersection of this row and column gives you the mantissa without mean difference: 7505.
And then find the mean difference for the same row and column 2 i.e., 2.
Thus, Mantissa = 7505 + 2 = 7507.
To find the characteristic, since 5.632 is greater than 1, the characteristic is the number of digits to the left of the decimal point minus 1.
In this case, there are two digits to the left of the decimal point, so the characteristic is 0.
Thus, log_{10} (5.632) = characteristic + mantissa
log_{10 }(5.632) = 0 + 0.7507 = 0.7507.
So, log_{10} (5.632) â‰ˆ 0.7507.
Example 3: Find the value of log_{10} 0.0751 using log table.
Solution:
To find the common logarithm of the number 0.0751 we need to evaluate characteristic and mantissa and add them together.
To find mantissa find the row labeled “75” and the column “1” in the log table.
The intersection of this row and column gives you the mantissa without mean difference: 8756.
As there is not digit after that, we don’t need to check the mean difference.
Thus, Mantissa is 8756.
To find the characteristic, since 0.0751 is smaller than 1, the characteristic of 7.5 Ã— 10^{2} is 2.
Thus, log_{10} 0.0751 = characteristic + mantissa
log_{10} 0.0751 = 2 + 0.8756 = 1.1244
So, log_{10} 0.0751 â‰ˆ 1.1244
Log Table Practice Questions
Using the log table, find the value of the following:
Q1. Find the value of log_{10}3.367
Q2. Find the value of log_{10}2.5
Q3. Find the value of log_{10}4.67
Q4. Find the value of log_{10}7.4
Log Table Frequently Asked Questions
Define Log Table
A logarithm table is a reference table that offers the logarithms of integers to a certain base. Prior to calculators and computers, these tables were used to simplify complicated multiplication, division, and exponentiation computations.
What is the Characteristic Value in a Logarithm Table?
The integral component (whole number part) of a number’s logarithm is the characteristic. It represents the magnitude of the original number.
What is the Mantissa in a Logarithmic Table?
The mantissa is the decimal portion of a number’s logarithm. It gives the fine adjustment required to obtain the exact value of the logarithm.
How to Find log Using Log Table?
When utilizing a logarithm table to discover the logarithm of a number, seek for the nearest value in the table that is less than or equal to the provided number. The mantissa is the difference between the logarithm of the provided number and the lookedup value, and the characteristic is the whole number component of this logarithm.
What is Common Logarithmic Table?
Logarithms to the base 10 (logarithms in the decimal system) are provided via common logarithm tables. They were commonly used for computations using base 10 integers in a variety of industries.
What is Natural Logarithmic Tables?
Natural logarithm tables give logarithms to the base “e,” where “e” is the mathematical constant 2.71828. These logarithms are frequently encountered in mathematics, physics, and engineering.
What are key Differences between Common Logarithmic Table and Natural Logarithmic Table?
Common logarithmic tables use base 10 logarithms, while natural logarithmic tables use base e (approximately 2.71828).
What was the Purpose of using Logarithmic Tables?
Before calculators and computers, logarithm tables were used to simplify difficult computations and eliminate the need for tedious human math. They were especially useful when performing scientific, technical, and financial computations.
Is Log Table in Chemistry is same as Mathematics?
Yes, as in chemistry, specifically in physical chemistry, there is a lot of use for logarithms. Thus, a log table is used to calculate the values of logarithms for many different formulas.
Where can you Download Log Table PDF?
You can download the PDF version of this log table: Log Table PDF