# Leyland Number

In number theory, a Leyland number is a number of the form xy + yx, where x and y are integers greater than 1 and 1 <y <= x.
Given a positive integer N. The task is to print first N Leyland number in ascending order. The first few Leyland numbers are 8, 17, 32, 54, 57, 100, …

Examples:

```Input : N = 1
Output : 8
22 + 22 = 4 + 4 = 8.

Input : N = 6
Output : 100
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The idea to run two loop, one for x and other for y. The outer loop start with 2 to n and for each iteration of outer loop, run inner loop start from 2 t x. And store xy + yx in an array. After calculating all the value sort them and print first n numbers.

Below is the implementation of this approach:

## C++

 `// CPP program to print first N Leyland Numbers. ` `#include ` `#define MAX 100 ` `using` `namespace` `std; ` ` `  `// Print first n Leyland Number. ` `void` `leyland(``int` `n) ` `{ ` `    ``vector<``int``> ans; ` ` `  `    ``// Outer loop for x from 2 to n. ` `    ``for` `(``int` `x = 2; x <= n; x++) { ` ` `  `        ``// Inner loop for y from 2 to x. ` `        ``for` `(``int` `y = 2; y <= x; y++) { ` ` `  `            ``// Calculating x^y + y^x ` `            ``int` `temp = ``pow``(x, y) + ``pow``(y, x); ` ` `  `            ``ans.push_back(temp); ` `        ``} ` `    ``} ` ` `  `    ``// Sorting the all Leyland Number. ` `    ``sort(ans.begin(), ans.end()); ` ` `  `    ``// Printing first n Leyland number. ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``cout << ans[i] << ``" "``; ` `} ` ` `  `// Driven Program ` `int` `main() ` `{ ` `    ``int` `n = 6; ` `    ``leyland(n); ` `    ``return` `0; ` `} `

## Java

 `// Java program to print first N  ` `// Leyland Numbers. ` `import` `java.util.*; ` `import` `java.lang.*; ` ` `  `public` `class` `GFG{ ` `    `  `    ``private` `static` `final` `int` `MAX = ``0``; ` `    `  `    ``// Print first n Leyland Number. ` `    ``public` `static` `void` `leyland(``int` `n) ` `    ``{ ` `        ``List ans = ``new` `ArrayList(); ` `         `  `     `  `        ``// Outer loop for x from 2 to n. ` `        ``for` `(``int` `x = ``2``; x <= n; x++) { ` `     `  `            ``// Inner loop for y from 2 to x. ` `            ``for` `(``int` `y = ``2``; y <= x; y++) { ` `     `  `                ``// Calculating x^y + y^x ` `                ``int` `temp = (``int``)Math.pow(x, y) +  ` `                           ``(``int``)Math.pow(y, x); ` `     `  `                ``ans.add(temp); ` `            ``} ` `        ``} ` `     `  `        ``// Sorting the all Leyland Number. ` `        ``Collections.sort(ans); ` `     `  `        ``// Printing first n Leyland number. ` `        ``for` `(``int` `i = ``0``; i < n; i++) ` `            ``System.out.print(ans.get(i) + ``" "``); ` `    ``} ` `     `  `    ``// Driven Program ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` `        ``int` `n = ``6``; ` `        ``leyland(n); ` `    ``} ` `} ` ` `  `// This code is contributed by Sachin Bisht `

## Python3

 `# Python3 program to print first N  ` `# Leyland Numbers. ` `import` `math ` ` `  `# Print first n Leyland Number. ` `def` `leyland(n): ` `    ``ans ``=` `[] ` `    ``x ``=` `2` `    ``y ``=` `2` ` `  `    ``# Outer loop for x from 2 to n. ` `    ``while` `x <``=` `n : ` ` `  `        ``# Inner loop for y from 2 to x. ` `        ``y ``=` `2` `        ``while` `y <``=` `x : ` ` `  `            ``# Calculating x^y + y^x ` `            ``temp ``=` `pow``(x, y) ``+` `pow``(y, x) ` ` `  `            ``ans.append(temp); ` `            ``y ``=` `y ``+` `1` `        ``x ``=` `x ``+` `1` ` `  `    ``# Sorting the all Leyland Number. ` `    ``ans.sort(); ` ` `  `    ``i ``=` `0` ` `  `    ``# Printing first n Leyland number. ` `    ``while` `i < n : ` `        ``print``(ans[i], end ``=` `" "``) ` `        ``i ``=` `i ``+` `1` ` `  `# Driver Code ` `n ``=` `6` `leyland(n) ` ` `  `# This code is contributed by rishabh_jain `

## C#

 `// C# program to print  ` `// first N Leyland Numbers. ` `using` `System; ` `using` `System.Collections; ` ` `  `class` `GFG ` `{ ` `     `  `    ``// Print first n  ` `    ``// Leyland Number. ` `    ``public` `static` `void` `leyland(``int` `n) ` `    ``{ ` `        ``ArrayList ans = ``new` `ArrayList(); ` `     `  `        ``// Outer loop for x ` `        ``// from 2 to n. ` `        ``for` `(``int` `x = 2; x <= n; x++)  ` `        ``{ ` `     `  `            ``// Inner loop for ` `            ``// y from 2 to x. ` `            ``for` `(``int` `y = 2; y <= x; y++)  ` `            ``{ ` `     `  `                ``// Calculating x^y + y^x ` `                ``int` `temp = (``int``)Math.Pow(x, y) +  ` `                           ``(``int``)Math.Pow(y, x); ` `     `  `                ``ans.Add(temp); ` `            ``} ` `        ``} ` `     `  `        ``// Sorting the all  ` `        ``// Leyland Number. ` `        ``ans.Sort(); ` `     `  `        ``// Printing first ` `        ``// n Leyland number. ` `        ``for` `(``int` `i = 0 ; i < n; i++) ` `        ``{ ` `            ``Console.Write(ans[i] + ``" "``); ` `        ``} ` `    ``} ` `     `  `    ``// Driver Code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `n = 6; ` `        ``leyland(n); ` `    ``} ` `} ` ` `  `// This code is contributed by Sam007 `

## PHP

 ` `

Output:

```8 17 32 54 57 100
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : Sam007, Mithun Kumar

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.