Let A be the 2 × 2 matrix with elements a11 = a12 = a21 = +1 and a22 = −1. Then the eigenvalues of the matrix A19 are

(A) A
(B) B
(C) C
(D) D
Answer: (D)
Explanation:
A = 1 1
1 -1
A2 = 2 0
0 2
A4 = A2 X A2
A4 = 4 0
0 4
A8 = 16 0
0 16
A16 = 256 0
0 256
A18 = A16 X A2
A18 = 512 0
0 512
A19 = 512 512
512 -512
Applying Characteristic polynomial
512-lambda 512
512 -(512+lambda) = 0
-(512-lambda)(512+lambda) - 512 x 512 = 0
lambda2 = 2 x 5122
Alternative solution:
det(A) = -2.
det(A^19) = (det(A))^19 = -2^19 = lambda1*lambda2.
The only viable option is D.
Thanks to Matan Mandelbrod for suggesting this solution.
Quiz of this Question