Open In App
Related Articles

GATE | GATE CS 2010 | Question 65

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

The grammar S → aSa | bS | c is

(A)

LL(1) but not LR(1)

(B)

LR(1)but not LR(1)

(C)

Both LL(1)and LR(1)

(D)

Neither LL(1)nor LR(1)



Answer: (C)

Explanation:
First(aSa) = a
First(bS) = b
First(c) = c
All are mutually disjoint i.e no common terminal 
between them, the given grammar is LL(1).

As the grammar is LL(1) so it will also be LR(1) as LR parsers are
more powerful then LL(1) parsers. and all LL(1) grammar are also LR(1)
So option C is correct. 

Below are more details. A grammar is LL(1) if it is possible to choose the next production by looking at only the next token in the input string.

Formally, grammar G is LL(1) if and only if 
   For all productions  A → α1 |  α2 | ... | αn, 
      First(αi) ∩ First(αj) =  ∅, 1 ≤ i,j  ≤ n,  i ≠ j.
   For every non-terminal A such that First(A) contains ε, 
      First(A) ∩ Follow(A) = ∅ 


Quiz of this Question
Please comment below if you find anything wrong in the above post

Last Updated : 14 Sep, 2021
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads