# Count number of ways to convert string S to T by performing K cyclic shifts

• Difficulty Level : Hard
• Last Updated : 05 May, 2021

Given two strings S and T and a number K, the task is to count the number of ways to convert string S to string T by performing K cyclic shifts

The cyclic shift is defined as the string S can be split into two non-empty parts X + Y and in one operation we can transform S to Y + X from X + Y.

Note: Since count can be very large print the answer to modulo 109 + 7.
Examples:

Input: S = “ab”, T = “ab”, K = 2
Output:
Explanation:
The only way to do this is to convert [ab to ba] in the first move and then [ba to ab] in the second move.
Input: S = “ababab”, T = “ababab”, K = 1
Output:
Explanation:
One possible way to convert S to T in one move is [ab | abab] -> [ababab], the second way is [abab | ab] -> [ababab]. So there are total two ways.

Approach: This problem can be solved using Dynamic Programming. Let us call a cyclic shift ‘good’ if at the end we are at string T and the vice versa for ‘bad’. Below are the steps:

1. Precompute the number of good(denoted by a) and bad(denoted by b) cyclic shifts.
2. Initialize two dp arrays such that dp1[i] denote the number of ways to get to a good shift in i moves and dp2[i] denotes the number of ways to get to a bad shift in i moves.
3. For transition, we are only concerned about previous state i.e., (i – 1)th state and the answer to this question is dp1[K].
4. So the number of ways to reach a good state in i moves is equal to the number of ways of reaching a good shift in i-1 moves multiplied by (a-1) (as last shift is also good)
5. So the number of ways of reaching a bad shift in i-1 moves multiplied by (a)(as next move can be any of the good shifts).

Below is the recurrence relation for the good and bad shifts:

So for good shifts we have: Similarly, for bad shifts we have: Below is the implementation of above approach:

## C++

 `// C++ program for the above approach``#include ``using` `namespace` `std;``#define mod 10000000007` `// Function to count number of ways to``// convert string S to string T by``// performing K cyclic shifts``long` `long` `countWays(string s, string t,``                    ``int` `k)``{``    ``// Calculate length of string``    ``int` `n = s.size();` `    ``// 'a' is no of good cyclic shifts``    ``// 'b' is no of bad cyclic shifts``    ``int` `a = 0, b = 0;` `    ``// Iterate in the string``    ``for` `(``int` `i = 0; i < n; i++) {` `        ``string p = s.substr(i, n - i)``                ``+ s.substr(0, i);` `        ``// Precompute the number of good``        ``// and bad cyclic shifts``        ``if` `(p == t)``            ``a++;``        ``else``            ``b++;``    ``}` `    ``// Initialize two dp arrays``    ``// dp1[i] to store the no of ways to``    ``// get to a good shift in i moves` `    ``// dp2[i] to store the no of ways to``    ``// get to a bad shift in i moves``    ``vector<``long` `long``> dp1(k + 1), dp2(k + 1);` `    ``if` `(s == t) {``        ``dp1 = 1;``        ``dp2 = 0;``    ``}``    ``else` `{``        ``dp1 = 0;``        ``dp2 = 1;``    ``}` `    ``// Calculate good and bad shifts``    ``for` `(``int` `i = 1; i <= k; i++) {` `        ``dp1[i]``            ``= ((dp1[i - 1] * (a - 1)) % mod``            ``+ (dp2[i - 1] * a) % mod)``            ``% mod;` `        ``dp2[i]``            ``= ((dp1[i - 1] * (b)) % mod``            ``+ (dp2[i - 1] * (b - 1)) % mod)``            ``% mod;``    ``}` `    ``// Return the required number of ways``    ``return` `dp1[k];``}` `// Driver Code``int` `main()``{``    ``// Given Strings``    ``string S = ``"ab"``, T = ``"ab"``;` `    ``// Given K shifts required``    ``int` `K = 2;` `    ``// Function Call``    ``cout << countWays(S, T, K);``    ``return` `0;``}`

## Java

 `// Java program for above approach``class` `GFG{``    ` `static` `long` `mod = 10000000007L;` `// Function to count number of ways to``// convert string S to string T by``// performing K cyclic shifts``static` `long` `countWays(String s, String t,``                    ``int` `k)``{``    ` `    ``// Calculate length of string``    ``int` `n = s.length();` `    ``// 'a' is no of good cyclic shifts``    ``// 'b' is no of bad cyclic shifts``    ``int` `a = ``0``, b = ``0``;` `    ``// Iterate in the string``    ``for``(``int` `i = ``0``; i < n; i++)``    ``{``    ``String p = s.substring(i, n - i) +``                ``s.substring(``0``, i);``        ` `    ``// Precompute the number of good``    ``// and bad cyclic shifts``    ``if` `(p == t)``        ``a++;``    ``else``        ``b++;``    ``}` `    ``// Initialize two dp arrays``    ``// dp1[i] to store the no of ways to``    ``// get to a good shift in i moves` `    ``// dp2[i] to store the no of ways to``    ``// get to a bad shift in i moves``    ``long` `dp1[] = ``new` `long``[k + ``1``];``    ``long` `dp2[] = ``new` `long``[k + ``1``];` `    ``if` `(s == t)``    ``{``        ``dp1[``0``] = ``1``;``        ``dp2[``0``] = ``0``;``    ``}``    ``else``    ``{``        ``dp1[``0``] = ``0``;``        ``dp2[``0``] = ``1``;``    ``}` `    ``// Calculate good and bad shifts``    ``for``(``int` `i = ``1``; i <= k; i++)``    ``{``    ``dp1[i] = ((dp1[i - ``1``] * (a - ``1``)) % mod +``                ``(dp2[i - ``1``] * a) % mod) % mod;``    ``dp2[i] = ((dp1[i - ``1``] * (b)) % mod +``                ``(dp2[i - ``1``] * (b - ``1``)) % mod) % mod;``    ``}` `    ``// Return the required number of ways``    ``return` `dp1[k];``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ` `    ``// Given Strings``    ``String S = ``"ab"``, T = ``"ab"``;` `    ``// Given K shifts required``    ``int` `K = ``2``;` `    ``// Function Call``    ``System.out.print(countWays(S, T, K));``}``}` `// This code is contributed by Pratima Pandey`

## Python3

 `# Python3 program for the above approach``mod ``=` `1000000007` `# Function to count number of ways``# to convert string S to string T by``# performing K cyclic shifts``def` `countWays(s, t, k):``    ` `    ``# Calculate length of string``    ``n ``=` `len``(s)``    ` `    ``# a is no. of good cyclic shifts``    ``# b is no. of bad cyclic shifts``    ``a ``=` `0``    ``b ``=` `0``    ` `    ``# Iterate in string``    ``for` `i ``in` `range``(n):``        ``p ``=` `s[i : n ``-` `i ``+` `1``] ``+` `s[: i ``+` `1``]``        ` `        ``# Precompute the number of good``        ``# and bad cyclic shifts``        ``if``(p ``=``=` `t):``            ``a ``+``=` `1``        ``else``:``            ``b ``+``=` `1``            ` `    ``# Initialize two dp arrays``    ``# dp1[i] to store the no of ways to``    ``# get to a goof shift in i moves``    ` `    ``# dp2[i] to store the no of ways to``    ``# get to a bad shift in i moves``    ``dp1 ``=` `[``0``] ``*` `(k ``+` `1``)``    ``dp2 ``=` `[``0``] ``*` `(k ``+` `1``)``    ` `    ``if``(s ``=``=` `t):``        ``dp1[``0``] ``=` `1``        ``dp2[``0``] ``=` `0``    ``else``:``        ``dp1[``0``] ``=` `0``        ``dp2[``0``] ``=` `1``        ` `    ``# Calculate good and bad shifts    ``    ``for` `i ``in` `range``(``1``, k ``+` `1``):``        ``dp1[i] ``=` `((dp1[i ``-` `1``] ``*` `(a ``-` `1``)) ``%` `mod ``+``                ``(dp2[i ``-` `1``] ``*` `a) ``%` `mod) ``%` `mod` `        ``dp2[i] ``=` `((dp1[i ``-` `1``] ``*` `(b)) ``%` `mod ``+``                ``(dp2[i ``-` `1``] ``*` `(b ``-` `1``)) ``%` `mod) ``%` `mod``                    ` `    ``# Return the required number of ways``    ``return``(dp1[k])``    ` `# Driver Code` `# Given Strings``S ``=` `'ab'``T ``=` `'ab'` `# Given K shifts required``K ``=` `2` `# Function call``print``(countWays(S, T, K))` `# This code is contributed by Arjun Saini`

## C#

 `// C# program for the above approach``using` `System;` `class` `GFG{``    ` `static` `long` `mod = 10000000007L;` `// Function to count number of ways to``// convert string S to string T by``// performing K cyclic shifts``static` `long` `countWays(``string` `s, ``string` `t,``                      ``int` `k)``{``    ` `    ``// Calculate length of string``    ``int` `n = s.Length;` `    ``// 'a' is no of good cyclic shifts``    ``// 'b' is no of bad cyclic shifts``    ``int` `a = 0, b = 0;` `    ``// Iterate in the string``    ``for``(``int` `i = 0; i < n; i++)``    ``{``        ``string` `p = s.Substring(i, n - i) +``                   ``s.Substring(0, i);``        ` `        ``// Precompute the number of good``        ``// and bad cyclic shifts``        ``if` `(p == t)``            ``a++;``        ``else``            ``b++;``    ``}` `    ``// Initialize two dp arrays``    ``// dp1[i] to store the no of ways to``    ``// get to a good shift in i moves` `    ``// dp2[i] to store the no of ways to``    ``// get to a bad shift in i moves``    ``long` `[]dp1 = ``new` `long``[k + 1];``    ``long` `[]dp2 = ``new` `long``[k + 1];` `    ``if` `(s == t)``    ``{``        ``dp1 = 1;``        ``dp2 = 0;``    ``}``    ``else``    ``{``        ``dp1 = 0;``        ``dp2 = 1;``    ``}` `    ``// Calculate good and bad shifts``    ``for``(``int` `i = 1; i <= k; i++)``    ``{``        ``dp1[i] = ((dp1[i - 1] * (a - 1)) % mod +``                  ``(dp2[i - 1] * a) % mod) % mod;``        ``dp2[i] = ((dp1[i - 1] * (b)) % mod +``                  ``(dp2[i - 1] * (b - 1)) % mod) % mod;``    ``}` `    ``// Return the required number of ways``    ``return` `dp1[k];``}` `// Driver code``public` `static` `void` `Main(``string``[] args)``{``    ` `    ``// Given Strings``    ``string` `S = ``"ab"``, T = ``"ab"``;` `    ``// Given K shifts required``    ``int` `K = 2;` `    ``// Function call``    ``Console.Write(countWays(S, T, K));``}``}` `// This code is contributed by rutvik_56`

## Javascript

 ``

Output:

`1`

Time Complexity: O(N)
Auxiliary Space: O(K)

My Personal Notes arrow_drop_up