# Capacity To Ship Packages Within D Days

• Difficulty Level : Hard
• Last Updated : 06 Jul, 2021

Given an array arr[] consisting of N positive integers representing the weights of N items and a positive integer D, the task is to find the minimum weight capacity of a boat(say K) to ship all weights within D days such that the order of weights loaded on the ship is in the order of the array elements in arr[] and the total amount of weight loaded by ship each day is K.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {1, 2, 1}, D = 2
Output: 3
Explanation:
Consider the minimum weight required by the boat as 3, then below is the order of weights such all the weight can be shipped within D(= 2) days:
Day 1: Ship the weights of values 1 and 2 on the first day as the sum of weights 1 + 2 = 3(<= 3).
Day 2: Ship the weights of value 1 on the second day as the sum of weights 1(<= 3).
Considering the minimum weight amount as 3, ships all the weight within D(= 2) days. Therefore, print 3.

Input: arr[] = {9, 8, 10}, D = 3
Output: 10

Approach: The given problem can be solved by using the Greedy Technique and Binary Search. The monotonicity of the problem can be observed that if all packages can be successfully shipped within D days with capacity K, then definitely they can be shipped with any capacity larger than K. Follow the steps below to solve the problem:

• Initialize a variable, say ans as -1 to store the resultant minimum capacity of the boat required.
• Initialize two variables, say s and e with the maximum element in the given array and the total sum of the array respectively which denotes the lower and upper bounds of the search space.
• Iterate until the value of s is less than or equals to e, and perform the following steps:
• Initialize a variable, say mid as (s + e)/2.
• Check if it is possible to ship all the packages within D days when the maximum capacity allowed is mid. If found to be true, then update the value of ans to mid and the value of e to (mid – 1).
• Otherwise, update the value of s to (mid + 1).
• After completing the above steps, print the value of ans as the result.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach` `#include ``using` `namespace` `std;` `// Function to check if the weights``// can be delivered in D days or not``bool` `isValid(``int` `weight[], ``int` `n,``             ``int` `D, ``int` `mx)``{``    ``// Stores the count of days required``    ``// to ship all the weights if the``    ``// maximum capacity is mx``    ``int` `st = 1;``    ``int` `sum = 0;` `    ``// Traverse all the weights``    ``for` `(``int` `i = 0; i < n; i++) {``        ``sum += weight[i];` `        ``// If total weight is more than``        ``// the maximum capacity``        ``if` `(sum > mx) {``            ``st++;``            ``sum = weight[i];``        ``}` `        ``// If days are more than D,``        ``// then return false``        ``if` `(st > D)``            ``return` `false``;``    ``}` `    ``// Return true for the days < D``    ``return` `true``;``}` `// Function to find the least weight``// capacity of a boat to ship all the``// weights within D days``void` `shipWithinDays(``int` `weight[], ``int` `D,``                    ``int` `n)``{``    ``// Stores the total weights to``    ``// be shipped``    ``int` `sum = 0;` `    ``// Find the sum of weights``    ``for` `(``int` `i = 0; i < n; i++)``        ``sum += weight[i];` `    ``// Stores the maximum weight in the``    ``// array that has to be shipped``    ``int` `s = weight;``    ``for` `(``int` `i = 1; i < n; i++) {``        ``s = max(s, weight[i]);``    ``}` `    ``// Store the ending value for``    ``// the search space``    ``int` `e = sum;` `    ``// Store the required result``    ``int` `res = -1;` `    ``// Perform binary search``    ``while` `(s <= e) {` `        ``// Store the middle value``        ``int` `mid = s + (e - s) / 2;` `        ``// If mid can be shipped, then``        ``// update the result and end``        ``// value of the search space``        ``if` `(isValid(weight, n, D, mid)) {``            ``res = mid;``            ``e = mid - 1;``        ``}` `        ``// Search for minimum value``        ``// in the right part``        ``else``            ``s = mid + 1;``    ``}` `    ``// Print the result``    ``cout << res;``}` `// Driver Code``int` `main()``{``    ``int` `weight[] = { 9, 8, 10 };``    ``int` `D = 3;``    ``int` `N = ``sizeof``(weight) / ``sizeof``(weight);``    ``shipWithinDays(weight, D, N);` `    ``return` `0;``}`

## Java

 `// Java program for the above approach``import` `java.io.*;` `class` `GFG{``  ` `// Function to check if the weights``// can be delivered in D days or not``static` `boolean` `isValid(``int``[] weight, ``int` `n,``                       ``int` `D, ``int` `mx)``{``    ` `    ``// Stores the count of days required``    ``// to ship all the weights if the``    ``// maximum capacity is mx``    ``int` `st = ``1``;``    ``int` `sum = ``0``;` `    ``// Traverse all the weights``    ``for``(``int` `i = ``0``; i < n; i++)``    ``{``        ``sum += weight[i];` `        ``// If total weight is more than``        ``// the maximum capacity``        ``if` `(sum > mx)``        ``{``            ``st++;``            ``sum = weight[i];``        ``}` `        ``// If days are more than D,``        ``// then return false``        ``if` `(st > D)``            ``return` `false``;``    ``}` `    ``// Return true for the days < D``    ``return` `true``;``}` `// Function to find the least weight``// capacity of a boat to ship all the``// weights within D days``static` `void` `shipWithinDays(``int``[] weight, ``int` `D, ``int` `n)``{``    ` `    ``// Stores the total weights to``    ``// be shipped``    ``int` `sum = ``0``;` `    ``// Find the sum of weights``    ``for``(``int` `i = ``0``; i < n; i++)``        ``sum += weight[i];` `    ``// Stores the maximum weight in the``    ``// array that has to be shipped``    ``int` `s = weight[``0``];``    ``for``(``int` `i = ``1``; i < n; i++)``    ``{``        ``s = Math.max(s, weight[i]);``    ``}` `    ``// Store the ending value for``    ``// the search space``    ``int` `e = sum;` `    ``// Store the required result``    ``int` `res = -``1``;` `    ``// Perform binary search``    ``while` `(s <= e)``    ``{``        ` `        ``// Store the middle value``        ``int` `mid = s + (e - s) / ``2``;` `        ``// If mid can be shipped, then``        ``// update the result and end``        ``// value of the search space``        ``if` `(isValid(weight, n, D, mid))``        ``{``            ``res = mid;``            ``e = mid - ``1``;``        ``}` `        ``// Search for minimum value``        ``// in the right part``        ``else``            ``s = mid + ``1``;``    ``}` `    ``// Print the result``    ``System.out.println(res);``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ` `    ``int``[] weight = { ``9``, ``8``, ``10` `};``    ``int` `D = ``3``;``    ``int` `N = weight.length;``    ` `    ``shipWithinDays(weight, D, N);``}``}` `// This code is contributed by Dharanendra L V.`

## Python3

 `# Python3 program for the above approach` `# Function to check if the weights``# can be delivered in D days or not``def` `isValid(weight, n, D, mx):``    ` `    ``# Stores the count of days required``    ``# to ship all the weights if the``    ``# maximum capacity is mx``    ``st ``=` `1``    ``sum` `=` `0` `    ``# Traverse all the weights``    ``for` `i ``in` `range``(n):``        ``sum` `+``=` `weight[i]` `        ``# If total weight is more than``        ``# the maximum capacity``        ``if` `(``sum` `> mx):``            ``st ``+``=` `1``            ``sum` `=` `weight[i]` `        ``# If days are more than D,``        ``# then return false``        ``if` `(st > D):``            ``return` `False` `    ``# Return true for the days < D``    ``return` `True` `# Function to find the least weight``# capacity of a boat to ship all the``# weights within D days``def` `shipWithinDays(weight, D, n):``    ` `    ``# Stores the total weights to``    ``# be shipped``    ``sum` `=` `0` `    ``# Find the sum of weights``    ``for` `i ``in` `range``(n):``        ``sum` `+``=` `weight[i]` `    ``# Stores the maximum weight in the``    ``# array that has to be shipped``    ``s ``=` `weight[``0``]``    ``for` `i ``in` `range``(``1``, n):``        ``s ``=` `max``(s, weight[i])` `    ``# Store the ending value for``    ``# the search space``    ``e ``=` `sum` `    ``# Store the required result``    ``res ``=` `-``1` `    ``# Perform binary search``    ``while` `(s <``=` `e):``        ` `        ``# Store the middle value``        ``mid ``=` `s ``+` `(e ``-` `s) ``/``/` `2` `        ``# If mid can be shipped, then``        ``# update the result and end``        ``# value of the search space``        ``if` `(isValid(weight, n, D, mid)):``            ``res ``=` `mid``            ``e ``=` `mid ``-` `1` `        ``# Search for minimum value``        ``# in the right part``        ``else``:``            ``s ``=` `mid ``+` `1` `    ``# Print the result``    ``print``(res)` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ` `    ``weight ``=` `[ ``9``, ``8``, ``10` `]``    ``D ``=` `3``    ``N ``=` `len``(weight)``    ` `    ``shipWithinDays(weight, D, N)` `# This code is contributed by ipg2016107`

## C#

 `// C# program for the above approach``using` `System;` `class` `GFG{` `// Function to check if the weights``// can be delivered in D days or not``static` `bool` `isValid(``int``[] weight, ``int` `n,``                    ``int` `D, ``int` `mx)``{``    ` `    ``// Stores the count of days required``    ``// to ship all the weights if the``    ``// maximum capacity is mx``    ``int` `st = 1;``    ``int` `sum = 0;` `    ``// Traverse all the weights``    ``for``(``int` `i = 0; i < n; i++)``    ``{``        ``sum += weight[i];` `        ``// If total weight is more than``        ``// the maximum capacity``        ``if` `(sum > mx)``        ``{``            ``st++;``            ``sum = weight[i];``        ``}` `        ``// If days are more than D,``        ``// then return false``        ``if` `(st > D)``            ``return` `false``;``    ``}` `    ``// Return true for the days < D``    ``return` `true``;``}` `// Function to find the least weight``// capacity of a boat to ship all the``// weights within D days``static` `void` `shipWithinDays(``int``[] weight, ``int` `D, ``int` `n)``{``    ` `    ``// Stores the total weights to``    ``// be shipped``    ``int` `sum = 0;` `    ``// Find the sum of weights``    ``for``(``int` `i = 0; i < n; i++)``        ``sum += weight[i];` `    ``// Stores the maximum weight in the``    ``// array that has to be shipped``    ``int` `s = weight;``    ``for``(``int` `i = 1; i < n; i++)``    ``{``        ``s = Math.Max(s, weight[i]);``    ``}` `    ``// Store the ending value for``    ``// the search space``    ``int` `e = sum;` `    ``// Store the required result``    ``int` `res = -1;` `    ``// Perform binary search``    ``while` `(s <= e)``    ``{``        ` `        ``// Store the middle value``        ``int` `mid = s + (e - s) / 2;` `        ``// If mid can be shipped, then``        ``// update the result and end``        ``// value of the search space``        ``if` `(isValid(weight, n, D, mid))``        ``{``            ``res = mid;``            ``e = mid - 1;``        ``}` `        ``// Search for minimum value``        ``// in the right part``        ``else``            ``s = mid + 1;``    ``}` `    ``// Print the result``    ``Console.WriteLine(res);``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int``[] weight = { 9, 8, 10 };``    ``int` `D = 3;``    ``int` `N = weight.Length;``    ` `    ``shipWithinDays(weight, D, N);``}``}` `// This code is contributed by ukasp`

## Javascript

 ``
Output:
`10`

Time Complexity: O(N*log(S – M)), where S is the sum of the array elements and M is the maximum element of the array.
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up