Skip to content
Related Articles

Related Articles

Improve Article

BCD addition of given Decimal numbers

  • Difficulty Level : Easy
  • Last Updated : 26 Mar, 2021

Given two numbers A and B, the task is to perform BCD Addition of the given numbers.

Examples: 

Input: A = 12, B = 20 
Output: 110010 
Explanation: 
The summation of A and B is 12 + 20 = 32. 
The binary representation of 3 = 0011 
The binary representation of 2 = 0010 
Therefore, the BCD Addition is “0011” + “0010” = “110010”

Input: A = 10, B = 10 
Output:100000 
Explanation: 
The summation of A and B is 10 + 10 = 20. 
The binary representation of 2 = 0010 
The binary representation of 0 = 0000 
Therefore, the BCD Addition is “0010” + “0000” = “100000”

Approach: The idea is to convert the summation of given two numbers A and B to BCD Number. Below are the steps: 



  1. Find the summation(say num) of the two given numbers A and B.
  2. For each digit in the number num, convert it into binary representation up to 4 bits.
  3. Concatenate the binary representation of each digit above and print the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to perform BCD Addition
string BCDAddition(int A, int B)
{
 
    // Store the summation of A and B
    // in form of string
    string s = to_string(A + B);
    int l = s.length();
 
    // To store the final result
    string ans;
 
    string str;
 
    // Forming BCD using Bitset
    for (int i = 0; i < l; i++) {
 
        // Find the binary representation
        // of the current characters
        str = bitset<4>(s[i]).to_string();
        ans.append(str);
    }
 
    // Stripping off leading zeroes.
    const auto loc1 = ans.find('1');
 
    // Return string ans
    if (loc1 != string::npos) {
        return ans.substr(loc1);
    }
    return "0";
}
 
// Driver Code
int main()
{
    // Given Numbers
    int A = 12, B = 20;
 
    // Function Call
    cout << BCDAddition(A, B);
    return 0;
}

Java




// Java program for the above approach
class GFG{
     
// Function to perform BCD Addition
static String BCDAddition(int A, int B)
{
     
    // Store the summation of A and B
    // in form of string
    String s = String.valueOf(A + B);
    int l = s.length();
  
    // Forming BCD using Bitset
    String temp[] = { "0000", "0001",
                      "0010", "0011",
                      "0100", "0101",
                      "0110", "0111",
                      "1000", "1001" };
    String ans = "";
      
    for(int i = 0; i < l; i++)
    {
         
        // Find the binary representation
        // of the current characters
        String t = temp[s.charAt(i) - '0'];
        ans = ans + String.valueOf(t);
    }
          
    // Stripping off leading zeroes.
    int loc1 = 0;
    while (loc1 < l && ans.charAt(loc1) != '1')
    {
        loc1++;
    }
  
    // Return string ans
    return ans.substring(loc1);
}
 
// Driver code    
public static void main(String[] args)
{
     
    // Given Numbers
    int A = 12;
    int B = 20;
      
    // Function Call
    System.out.println(BCDAddition(A, B));
}
}
 
// This code is contributed by divyesh072019

Python3




# Python3 program for the above approach
 
# Function to perform BCD Addition
def BCDAddition(A, B):
 
    # Store the summation of A and B
    # in form of string
    s = str(A + B)
    l = len(s)
 
    # Forming BCD using Bitset
    temp = [ "0000", "0001", "0010", "0011", "0100",
             "0101", "0110", "0111", "1000", "1001" ]
    ans = ""
     
    for i in range(l):
 
        # Find the binary representation
        # of the current characters
        t = temp[ord(s[i]) - ord('0')]
        ans = ans + str(t)
         
    # Stripping off leading zeroes.
    loc1 = ans.find('1')
 
    # Return string ans
    return ans[loc1:]
 
# Driver Code
 
# Given Numbers
A = 12
B = 20
 
# Function Call
print(BCDAddition(A, B))
 
# This code is contributed by grand_master

C#




// C# program for the above approach
using System;
class GFG
{
     
    // Function to perform BCD Addition
    static String BCDAddition(int A, int B)
    {
          
        // Store the summation of A and B
        // in form of string
        string s = (A + B).ToString();
        int l = s.Length;
       
        // Forming BCD using Bitset
        string[] temp = { "0000", "0001",
                          "0010", "0011",
                          "0100", "0101",
                          "0110", "0111",
                          "1000", "1001" };
        string ans = "";         
        for(int i = 0; i < l; i++)
        {
              
            // Find the binary representation
            // of the current characters
            string t = temp[s[i] - '0'];
            ans = ans + t.ToString();
        }
               
        // Stripping off leading zeroes.
        int loc1 = 0;
        while (loc1 < l && ans[loc1] != '1')
        {
            loc1++;
        }
       
        // Return string ans
        return ans.Substring(loc1);
    }
 
  // Driver code
  static void Main()
  {
     
    // Given Numbers
    int A = 12;
    int B = 20;
       
    // Function Call
    Console.Write(BCDAddition(A, B));
  }
}
 
// This code is contributed by divyeshrbadiya07.

Javascript




<script>
// Javascript program for the above approach
// Function to perform BCD Addition
function BCDAddition(A, B)
{
     
    // Store the summation of A and B
    // in form of string
    var s = (A + B).toString();
    var l = s.length;
 
    // Forming BCD using Bitset
    temp = [ "0000", "0001",
                    "0010", "0011",
                    "0100", "0101",
                    "0110", "0111",
                    "1000", "1001" ]
    var ans = "";        
    for(var i = 0; i < l; i++)
    {
         
        // Find the binary representation
        // of the current characters
        var t = temp[s[i] - '0'];
        ans = ans + t.toString();
    }
         
    // Stripping off leading zeroes.
    var loc1 = 0;
    while (loc1 < l && ans[loc1] != '1')
    {
        loc1++;
    }
 
    // Return string ans
    return ans.substring(loc1);
}
 
// Driver code
 
// Given Numbers
var A = 12;
var B = 20;
 
// Function Call
document.write(BCDAddition(A, B));
 
// This code is contributed by     rutvik_56.
</script>
Output: 
110010

 

Time Complexity: O(log10(A+B))
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :