Open In App
Related Articles

Algorithms | Dynamic Programming | Question 5

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Four matrices M1, M2, M3 and M4 of dimensions pxq, qxr, rxs and sxt respectively can be multiplied is several ways with different number of total scalar multiplications. For example, when multiplied as ((M1 X M2) X (M3 X M4)), the total number of multiplications is pqr + rst + prt. When multiplied as (((M1 X M2) X M3) X M4), the total number of scalar multiplications is pqr + prs + pst. If p = 10, q = 100, r = 20, s = 5 and t = 80, then the number of scalar multiplications needed is

(A)

248000

(B)

44000

(C)

19000

(D)

25000



Answer: (C)

Explanation:

It is basically matrix chain multiplication problem. We get minimum number of multiplications using ((M1 X (M2 X M3)) X M4). Total number of multiplications = 100x20x5 (for M2 x M3) + 10x100x5 + 10x5x80 = 19000.

Hence (C) is the correct answer.



Quiz of this Question
Please comment below if you find anything wrong in the above post

Last Updated : 28 Jun, 2021
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads