Consider a Hamiltonian Graph (G) with no loops and parallel edges. Which of the following is true with respect to this Graph (G) ?
(a) deg (v) ≥ n / 2 for each vertex of G
(b) |E(G)| ≥ 1 / 2 (n – 1) (n – 2) + 2 edges
(c) deg (v) + deg (w) ≥ n for every n and v not connected by an edge.
(A) (a) and (b)
(B) (b) and (c)
(C) (a) and (c)
(D) (a), (b) and (c)
Answer: (C)
Explanation: In an Hamiltonian Graph (G) with no loops and parallel edges:
According to Dirac’s theorem in a n vertex graph, deg (v) ≥ n / 2 for each vertex of G.
According to Ore’s theorem deg (v) + deg (w) ≥ n for every n and v not connected by an edge is sufficient condition for a graph to be hamiltonian.
If |E(G)| ≥ 1 / 2 * [(n – 1) (n – 2)] then graph is connected but it doesn’t guaranteed to be Hamiltonian Graph.
(a) and (c) is correct regarding to Hamiltonian Graph.
So, option (C) is correct.
Quiz of this Question
Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!