Given a text and a wildcard pattern, implement wildcard pattern matching algorithm that finds if wildcard pattern is matched with text. The matching should cover the entire text (not partial text).
The wildcard pattern can include the characters ‘?’ and ‘*’
‘?’ – matches any single character
‘*’ – Matches any sequence of characters (including the empty sequence)
For example,
Text = "baaabab", Pattern = “*****ba*****ab", output : true Pattern = "baaa?ab", output : true Pattern = "ba*a?", output : true Pattern = "a*ab", output : false
Each occurrence of ‘?’ character in wildcard pattern can be replaced with any other character and each occurrence of ‘*’ with a sequence of characters such that the wildcard pattern becomes identical to the input string after replacement.
Let’s consider any character in the pattern.
Case 1: The character is ‘*’
Here two cases arise
- We can ignore ‘*’ character and move to next character in the Pattern.
- ‘*’ character matches with one or more characters in Text. Here we will move to next character in the string.
Case 2: The character is ‘?’
We can ignore current character in Text and move to next character in the Pattern and Text.
Case 3: The character is not a wildcard character
If current character in Text matches with current character in Pattern, we move to next character in the Pattern and Text. If they do not match, wildcard pattern and Text do not match.
We can use Dynamic Programming to solve this problem –
Let T[i][j] is true if first i characters in given string matches the first j characters of pattern.
DP Initialization:
// both text and pattern are null T[0][0] = true; // pattern is null T[i][0] = false; // text is null T[0][j] = T[0][j - 1] if pattern[j – 1] is '*'
DP relation :
// If current characters match, result is same as // result for lengths minus one. Characters match // in two cases: // a) If pattern character is '?' then it matches // with any character of text. // b) If current characters in both match if ( pattern[j – 1] == ‘?’) || (pattern[j – 1] == text[i - 1]) T[i][j] = T[i-1][j-1] // If we encounter ‘*’, two choices are possible- // a) We ignore ‘*’ character and move to next // character in the pattern, i.e., ‘*’ // indicates an empty sequence. // b) '*' character matches with ith character in // input else if (pattern[j – 1] == ‘*’) T[i][j] = T[i][j-1] || T[i-1][j] else // if (pattern[j – 1] != text[i - 1]) T[i][j] = false
Below is the implementation of the above Dynamic Programming approach.
// C++ program to implement wildcard // pattern matching algorithm #include <bits/stdc++.h> using namespace std;
// Function that matches input str with // given wildcard pattern bool strmatch( char str[], char pattern[], int n, int m)
{ // empty pattern can only match with
// empty string
if (m == 0)
return (n == 0);
// lookup table for storing results of
// subproblems
bool lookup[n + 1][m + 1];
// initailze lookup table to false
memset (lookup, false , sizeof (lookup));
// empty pattern can match with empty string
lookup[0][0] = true ;
// Only '*' can match with empty string
for ( int j = 1; j <= m; j++)
if (pattern[j - 1] == '*' )
lookup[0][j] = lookup[0][j - 1];
// fill the table in bottom-up fashion
for ( int i = 1; i <= n; i++) {
for ( int j = 1; j <= m; j++) {
// Two cases if we see a '*'
// a) We ignore ‘*’ character and move
// to next character in the pattern,
// i.e., ‘*’ indicates an empty sequence.
// b) '*' character matches with ith
// character in input
if (pattern[j - 1] == '*' )
lookup[i][j]
= lookup[i][j - 1] || lookup[i - 1][j];
// Current characters are considered as
// matching in two cases
// (a) current character of pattern is '?'
// (b) characters actually match
else if (pattern[j - 1] == '?'
|| str[i - 1] == pattern[j - 1])
lookup[i][j] = lookup[i - 1][j - 1];
// If characters don't match
else
lookup[i][j] = false ;
}
}
return lookup[n][m];
} int main()
{ char str[] = "baaabab" ;
char pattern[] = "*****ba*****ab" ;
// char pattern[] = "ba*****ab";
// char pattern[] = "ba*ab";
// char pattern[] = "a*ab";
// char pattern[] = "a*****ab";
// char pattern[] = "*a*****ab";
// char pattern[] = "ba*ab****";
// char pattern[] = "****";
// char pattern[] = "*";
// char pattern[] = "aa?ab";
// char pattern[] = "b*b";
// char pattern[] = "a*a";
// char pattern[] = "baaabab";
// char pattern[] = "?baaabab";
// char pattern[] = "*baaaba*";
if (strmatch(str, pattern, strlen (str),
strlen (pattern)))
cout << "Yes" << endl;
else
cout << "No" << endl;
return 0;
} |
// Java program to implement wildcard // pattern matching algorithm import java.util.Arrays;
public class GFG {
// Function that matches input str with
// given wildcard pattern
static boolean strmatch(String str, String pattern,
int n, int m)
{
// empty pattern can only match with
// empty string
if (m == 0 )
return (n == 0 );
// lookup table for storing results of
// subproblems
boolean [][] lookup = new boolean [n + 1 ][m + 1 ];
// initailze lookup table to false
for ( int i = 0 ; i < n + 1 ; i++)
Arrays.fill(lookup[i], false );
// empty pattern can match with empty string
lookup[ 0 ][ 0 ] = true ;
// Only '*' can match with empty string
for ( int j = 1 ; j <= m; j++)
if (pattern.charAt(j - 1 ) == '*' )
lookup[ 0 ][j] = lookup[ 0 ][j - 1 ];
// fill the table in bottom-up fashion
for ( int i = 1 ; i <= n; i++)
{
for ( int j = 1 ; j <= m; j++)
{
// Two cases if we see a '*'
// a) We ignore '*'' character and move
// to next character in the pattern,
// i.e., '*' indicates an empty
// sequence.
// b) '*' character matches with ith
// character in input
if (pattern.charAt(j - 1 ) == '*' )
lookup[i][j] = lookup[i][j - 1 ]
|| lookup[i - 1 ][j];
// Current characters are considered as
// matching in two cases
// (a) current character of pattern is '?'
// (b) characters actually match
else if (pattern.charAt(j - 1 ) == '?'
|| str.charAt(i - 1 )
== pattern.charAt(j - 1 ))
lookup[i][j] = lookup[i - 1 ][j - 1 ];
// If characters don't match
else
lookup[i][j] = false ;
}
}
return lookup[n][m];
}
// Driver code
public static void main(String args[])
{
String str = "baaabab" ;
String pattern = "*****ba*****ab" ;
// String pattern = "ba*****ab";
// String pattern = "ba*ab";
// String pattern = "a*ab";
// String pattern = "a*****ab";
// String pattern = "*a*****ab";
// String pattern = "ba*ab****";
// String pattern = "****";
// String pattern = "*";
// String pattern = "aa?ab";
// String pattern = "b*b";
// String pattern = "a*a";
// String pattern = "baaabab";
// String pattern = "?baaabab";
// String pattern = "*baaaba*";
if (strmatch(str, pattern, str.length(),
pattern.length()))
System.out.println( "Yes" );
else
System.out.println( "No" );
}
} // This code is contributed by Sumit Ghosh |
# Python program to implement wildcard # pattern matching algorithm # Function that matches input strr with # given wildcard pattern def strrmatch(strr, pattern, n, m):
# empty pattern can only match with
# empty strring
if (m = = 0 ):
return (n = = 0 )
# lookup table for storing results of
# subproblems
lookup = [[ False for i in range (m + 1 )] for j in range (n + 1 )]
# empty pattern can match with empty strring
lookup[ 0 ][ 0 ] = True
# Only '*' can match with empty strring
for j in range ( 1 , m + 1 ):
if (pattern[j - 1 ] = = '*' ):
lookup[ 0 ][j] = lookup[ 0 ][j - 1 ]
# fill the table in bottom-up fashion
for i in range ( 1 , n + 1 ):
for j in range ( 1 , m + 1 ):
# Two cases if we see a '*'
# a) We ignore ‘*’ character and move
# to next character in the pattern,
# i.e., ‘*’ indicates an empty sequence.
# b) '*' character matches with ith
# character in input
if (pattern[j - 1 ] = = '*' ):
lookup[i][j] = lookup[i][j - 1 ] or lookup[i - 1 ][j]
# Current characters are considered as
# matching in two cases
# (a) current character of pattern is '?'
# (b) characters actually match
elif (pattern[j - 1 ] = = '?' or strr[i - 1 ] = = pattern[j - 1 ]):
lookup[i][j] = lookup[i - 1 ][j - 1 ]
# If characters don't match
else :
lookup[i][j] = False
return lookup[n][m]
# Driver code strr = "baaabab"
pattern = "*****ba*****ab"
# char pattern[] = "ba*****ab" # char pattern[] = "ba*ab" # char pattern[] = "a*ab" # char pattern[] = "a*****ab" # char pattern[] = "*a*****ab" # char pattern[] = "ba*ab****" # char pattern[] = "****" # char pattern[] = "*" # char pattern[] = "aa?ab" # char pattern[] = "b*b" # char pattern[] = "a*a" # char pattern[] = "baaabab" # char pattern[] = "?baaabab" # char pattern[] = "*baaaba*" if (strrmatch(strr, pattern, len (strr), len (pattern))):
print ( "Yes" )
else :
print ( "No" )
# This code is contributed by shubhamsingh10 |
// C# program to implement wildcard // pattern matching algorithm using System;
class GFG {
// Function that matches input str with
// given wildcard pattern
static Boolean strmatch(String str,
String pattern,
int n, int m)
{
// empty pattern can only match with
// empty string
if (m == 0)
return (n == 0);
// lookup table for storing results of
// subproblems
Boolean[, ] lookup = new Boolean[n + 1, m + 1];
// initailze lookup table to false
for ( int i = 0; i < n + 1; i++)
for ( int j = 0; j < m + 1; j++)
lookup[i, j] = false ;
// empty pattern can match with
// empty string
lookup[0, 0] = true ;
// Only '*' can match with empty string
for ( int j = 1; j <= m; j++)
if (pattern[j - 1] == '*' )
lookup[0, j] = lookup[0, j - 1];
// fill the table in bottom-up fashion
for ( int i = 1; i <= n; i++) {
for ( int j = 1; j <= m; j++) {
// Two cases if we see a '*'
// a) We ignore '*'' character and move
// to next character in the pattern,
// i.e., '*' indicates an empty
// sequence.
// b) '*' character matches with ith
// character in input
if (pattern[j - 1] == '*' )
lookup[i, j] = lookup[i, j - 1]
|| lookup[i - 1, j];
// Current characters are considered as
// matching in two cases
// (a) current character of pattern is '?'
// (b) characters actually match
else if (pattern[j - 1] == '?'
|| str[i - 1] == pattern[j - 1])
lookup[i, j] = lookup[i - 1, j - 1];
// If characters don't match
else
lookup[i, j] = false ;
}
}
return lookup[n, m];
}
// Driver Code
public static void Main(String[] args)
{
String str = "baaabab" ;
String pattern = "*****ba*****ab" ;
// String pattern = "ba*****ab";
// String pattern = "ba*ab";
// String pattern = "a*ab";
// String pattern = "a*****ab";
// String pattern = "*a*****ab";
// String pattern = "ba*ab****";
// String pattern = "****";
// String pattern = "*";
// String pattern = "aa?ab";
// String pattern = "b*b";
// String pattern = "a*a";
// String pattern = "baaabab";
// String pattern = "?baaabab";
// String pattern = "*baaaba*";
if (strmatch(str, pattern, str.Length,
pattern.Length))
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
}
} // This code is contributed by Rajput-Ji |
Yes
Time complexity: O(m x n)
Auxillary space: O(m x n)
DP Memoisation solution:-
// C++ program to implement wildcard // pattern matching algorithm #include <bits/stdc++.h> using namespace std;
// Function that matches input str with // given wildcard pattern vector<vector< int > > dp;
int finding(string& s, string& p, int n, int m)
{ // return 1 if n and m are negative
if (n < 0 && m < 0)
return 1;
// return 0 if m is negative
if (m < 0)
return 0;
// return n if n is negative
if (n < 0)
{
// while m is positve
while (m >= 0)
{
if (p[m] != '*' )
return 0;
m--;
}
return 1;
}
// if dp state is not visited
if (dp[n][m] == -1)
{
if (p[m] == '*' )
{
return dp[n][m] = finding(s, p, n - 1, m)
|| finding(s, p, n, m - 1);
}
else
{
if (p[m] != s[n] && p[m] != '?' )
return dp[n][m] = 0;
else
return dp[n][m]
= finding(s, p, n - 1, m - 1);
}
}
// return dp[n][m] if dp state is previsited
return dp[n][m];
} bool isMatch(string s, string p)
{ dp.clear();
// resize the dp array
dp.resize(s.size() + 1, vector< int >(p.size() + 1, -1));
return dp[s.size()][p.size()]
= finding(s, p, s.size() - 1, p.size() - 1);
} // Driver code int main()
{ string str = "baaabab" ;
string pattern = "*****ba*****ab" ;
// char pattern[] = "ba*****ab";
// char pattern[] = "ba*ab";
// char pattern[] = "a*ab";
// char pattern[] = "a*****ab";
// char pattern[] = "*a*****ab";
// char pattern[] = "ba*ab****";
// char pattern[] = "****";
// char pattern[] = "*";
// char pattern[] = "aa?ab";
// char pattern[] = "b*b";
// char pattern[] = "a*a";
// char pattern[] = "baaabab";
// char pattern[] = "?baaabab";
// char pattern[] = "*baaaba*";
if (isMatch(str, pattern))
cout << "Yes" << endl;
else
cout << "No" << endl;
return 0;
} |
Yes
Time complexity: O(m x n).
Auxiliary space: O(m x n).
Further Improvements:
We can improve space complexity by making use of the fact that we only uses the result from last row.
One more improvement is yo merge consecutive ‘*’ in the pattern to single ‘*’ as they mean the same thing. For example for pattern “*****ba*****ab”, if we merge consecutive stars, the resultant string will be “*ba*ab”. So, value of m is reduced from 14 to 6.
This article is contributed by Aditya Goel. If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.