Open In App

Properties of Inverse Trigonometric Functions

A real function in the range  ƒ : R ⇒ [-1 , 1]  defined by ƒ(x) = sin(x) is not a bijection since different images have the same image such as ƒ(0) = 0, ƒ(2π) = 0,ƒ(π) = 0, so, ƒ is not one-one. Since ƒ is not a bijection (because it is not one-one) therefore inverse does not exist. To make a function bijective we can restrict the domain of the function to [−π/2, π/2] or [−π/2, 3π/2] or [−3π/2, 5π/2] after restriction of domain ƒ(x) = sin(x) is a bijection, therefore ƒ is invertible. i.e. to make sin(x) we can restrict it to the domain [−π/2, π/2] or [−π/2, 3π/2] or [−3π/2, 5π/2] or…….  but  [−π/2, π/2] is the Principal solution of sinθ, hence to make sinθ invertible. Naturally, the domain [−π/2, π/2] should be considered if no other domain is mentioned. 

Similarly, we restrict the domains of cos, tan, cot, sec, cosec so that they are invertible. Below are some trigonometric functions with their domain and range.



Function

Domain

Range

sin-1          [ -1 , 1 ]    [ −π/2 , π/2 ]
cos-1          [ -1 , 1 ]        [ 0 , π ]
tan-1               R    [ −π/2 , π/2 ] 
cot-1               R        [ 0 , π ]
sec-1    ( -∞ , -1 ] U [ 1,∞ )   [ 0 , π ] − { π/2 }
cosec-1   ( -∞ , -1 ] U [ 1 , ∞ ) [ −π/2 , π/2 ] – {0}

Properties of Inverse Trigonometric Functions

Set 1: Properties of sin

1) sin(θ) = x  ⇔  sin-1(x) = θ , θ ∈ [ -π/2 , π/2 ], x ∈ [ -1 , 1 ]  

2) sin-1(sin(θ)) = θ , θ ∈ [ -π/2 , π/2 ]



3) sin(sin-1(x)) = x , x ∈ [ -1 , 1 ]

Examples:

  • sin(π/6) = 1/2 ⇒ sin-1(1/2) = π/6 
  • sin-1(sin(π/6)) = π/6
  • sin(sin-1(1/2)) = 1/2

Set 2: Properties of cos

4) cos(θ) = x  ⇔  cos-1(x) = θ , θ ∈ [ 0 , π ] , x ∈ [ -1 , 1 ]  

5) cos-1(cos(θ)) = θ , θ ∈ [ 0 , π ]

6) cos(cos-1(x)) = x , x ∈ [ -1 , 1 ]

Examples:

  • cos(π/6) = √3/2 ⇒ cos-1(√3/2) = π/6 
  • cos-1(cos(π/6)) = π/6
  • cos(cos-1(1/2)) = 1/2

Set 3: Properties of tan

7) tan(θ) = x  ⇔  tan-1(x) = θ , θ ∈ [ -π/2 , π/2 ] ,  x ∈ R

8) tan-1(tan(θ)) = θ , θ ∈ [ -π/2 , π/2 ]

9) tan(tan-1(x)) = x , x ∈ R

Examples:

  • tan(π/4) = 1 ⇒ tan-1(1) = π/4
  • tan-1(tan(π/4)) = π/4
  • tan(tan-1(1)) = 1

Set 4: Properties of cot

10) cot(θ) = x  ⇔  cot-1(x) = θ , θ ∈ [ 0 , π ] , x ∈ R

11) cot-1(cot(θ)) = θ , θ ∈ [ 0 , π ]

12) cot(cot-1(x)) = x , x ∈ R

Examples:

  • cot(π/4) = 1 ⇒ cot-1(1) = π/4
  • cot(cot-1(π/4)) = π/4
  • cot(cot(1)) = 1

Set 5: Properties of sec

13) sec(θ) = x ⇔ sec-1(x) = θ , θ ∈ [ 0 , π] – { π/2 } , x ∈ (-∞,-1]  ∪ [1,∞)

14) sec-1(sec(θ)) = θ , θ ∈ [ 0 , π] – { π/2 }

15) sec(sec-1(x)) = x , x ∈ ( -∞ , -1 ]  ∪ [ 1 , ∞ )

Examples:

  • sec(π/3) = 1/2 ⇒ sec-1(1/2) = π/3 
  • sec-1(sec(π/3)) = π/3
  • sec(sec-1(1/2)) = 1/2

Set 6: Properties of cosec

16) cosec(θ) = x ⇔ cosec-1(x) = θ , θ ∈ [ -π/2 , π/2 ] – { 0 } , x ∈ ( -∞ , -1 ] ∪ [ 1,∞ )

17) cosec-1(cosec(θ)) = θ , θ ∈[ -π/2 , π ] – { 0 }

18) cosec(cosec-1(x)) = x , x ∈ ( -∞,-1 ] ∪ [ 1,∞ )

Examples:

  • cosec(π/6) = 2 ⇒ cosec-1(2) = π/6 
  • cosec-1(cosec(π/6)) = π/6
  • cosec(cosec-1(2)) = 2

Set 7: Other inverse trigonometric formulas

19) sin-1(-x) = -sin-1(x) ,  x ∈ [ -1 , 1 ]  

20) cos-1(-x) = π – cos-1(x) , x ∈ [ -1 , 1 ]

21) tan-1(-x) = -tan-1(x) , x ∈ R

22) cot-1(-x) = π – cot-1(x) , x ∈ R

23) sec-1(-x) = π – sec-1(x) , x ∈ ( -∞ , -1 ] ∪ [ 1 , ∞ )

24) cosec-1(-x) = -cosec-1(x) , x ∈ ( -∞ , -1 ] ∪ [ 1 , ∞ )

Examples:

  • sin-1(-1/2) = -sin-1(1/2)
  • cos-1(-1/2) = π -cos-1(1/2)
  • tan-1(-1) =  π -tan(1)
  • cot-1(-1) = -cot-1(1)
  • sec-1(-2) = -sec-1

Set 8: Sum of two trigonometric functions

25) sin-1(x) + cos-1(x) = π/2 , x ∈ [ -1 , 1 ]

26) tan-1(x) + cot-1(x) = π/2 , x ∈ R

27) sec-1(x) + cosec-1(x) = π/2 , x ∈ ( -∞ , -1 ] ∪ [ 1 , ∞ )

Proof:

sin-1(x) + cos-1(x) = π/2 , x ∈ [ -1 , 1 ]

let sin-1(x) = y 

now, 

x = sin y = cos((π/2) − y)

⇒ cos-1(x) = (π/2) – y = (π/2) −sin-1(x)

so, sin-1(x) + cos-1(x) = π/2                                        

tan-1(x) + cot-1(x) = π/2 , x ∈ R

Let tan-1(x) = y

now, cot(π/2 − y) = x 

⇒ cot-1(x) = (π/2 − y)

tan-1(x) + cot-1(x) = y + π/2 − y

so, tan-1(x) + cot-1(x) = π/2 

Similarly, we can prove the theorem of the sum of arcsec and arccosec as well.

Set 9: Conversion of trigonometric functions 

28) sin-1(1/x) = cosec-1(x) , x≥1 or x≤−1

29) cos-1(1/x) = sec-1(x) , x ≥ 1 or x ≤ −1

30) tan-1(1/x) = −π + cot-1(x)

Proof:

sin-1(1/x) = cosec-1(x) , x ≥ 1 or x ≤ −1

let, x = cosec(y)

1/x = sin(y)

⇒ sin-1(1/x) = y

⇒ sin-1(1/x) = cosec-1(x)

Similarly, we can prove the theorem of arccos and arctan as well

Example:

sin-1(1/2) = cosec-1(2)

Set 10: Periodic functions conversion

arcsin(x) = (-1)n arcsin(x) + πn

arccos(x) = ±arc cos x + 2πn

arctan(x) = arctan(x) + πn

arccot(x) = arccot(x) + πn

where n = 0, ±1, ±2, …. 


Article Tags :