Open In App

Class 11 RD Sharma Solutions – Chapter 5 Trigonometric Functions – Exercise 5.1 | Set 1

Prove the following identities (1 – 13)

Question 1. sec4θ – sec2θ = tan4θ + tan2θ  

Solution:

We have



sec4θ – sec2θ = tan4θ + tan2θ

Taking LHS



= sec4θ – sec2θ

= sec2θ(sec2θ – 1)

Using sec2 θ = tan2θ + 1, we get 

= (1 + tan2θ)tan2θ         

= tan2θ + tan4θ

Hence, LHS = RHS (Proved)

Question 2. sin6θ + cos6θ = 1 – 3sin2θcos2θ      

Solution:

We have

sin6θ + cos6θ = 1 – 3sin2θcos2θ 

Taking LHS

= sin6θ + cos6θ   

= (sin2θ)3 + (cos2θ)3

Using a3 + b3 = (a + b)(a2 + b2 – ab), we get

= (sin2θ + cos2θ)(sin4θ + cos4θ – sin2θcos2θ)     

Using a2 + b2 = (a + b)2 – 2ab and sin2θ + cos2θ = 1, we get

= (1)[(sin2θ + cos2θ)2 – 2sin2θcos2θ – sin2θcos2θ]             

= (1)[(1)2 – 3sin2θcos2θ] 

= 1 – 3sin2θcos2θ

Hence, LHS = RHS (Proved)

Question 3. (cosecθ – sinθ)(secθ – cosθ)(tanθ + cotθ) = 1

Solution:

We have

(cosecθ – sinθ)(secθ – cosθ)(tanθ + cotθ) = 1

Taking LHS

= (cosecθ – sinθ)(secθ – cosθ)(tanθ + cotθ)

Using cosecθ = 1/sinθ and secθ = 1/cosθ   

  

  

= 1

Hence, LHS = RHS (Proved)

Question 4. cosecθ(secθ – 1) – cotθ(1 – cosθ) = tanθ – sinθ

Solution:

We have

cosecθ(secθ – 1) – cotθ(1 – cosθ) = tanθ – sinθ

Taking LHS

Hence, LHS = RHS(Proved)

Question 5. 

Solution:

We have

Taking LHS

  

Using a2 – b2 = (a + b)(a – b) and a3 + b3 = (a + b)(a2 + b2ab), we get

= sinA

Hence, LHS = RHS(Proved)

Question 6. 

Solution:

We have

Taking LHS

Using tanA = sinA/cosA and cotA = cosA/sinA, we get

                            

Using a3 – b3 = (a – b)(a2 + b2 + ab), we get

     

Using cosecA = 1/sinA and secA = 1/cosA, we get

= secAcosecA + 1         

Hence, LHS = RHS(Proved)                

Question 7.

Solution:  

We have

Taking LHS

Using a3 ± b3 = (a ± b)(a2 + b2 ± ab), we get

 

Using sin2θ + cos2θ = 1, we get

= 1 – sinAcosA + 1 + sinAcosA          

= 2

Hence, LHS = RHS(Proved)

Question 8. (secAsecB + tanAtanB)2 – (secAtanB + tanAsecB)2 = 1

Solution:

We have

(secAsecB + tanAtanB)2 – (secAtanB + tanAsecB)2 = 1

Taking LHS

= (secAsecB + tanAtanB)2 – (secAtanB + tanAsecB)2

Expanding the above equation using the formula  

(a + b)2 = a2 + b2 + 2ab

= (secAsecB)2 + (tanAtanB)2 + 2(secAsecB)(tanAtanB) – 

   (secAtanB)2 – (tanAsecB)2 – 2(secAtanB)(tanAsecB)

= sec2Asec2B + tan2Atan2B – sec2Atan2B – tan2Asec2B

= sec2A(sec2B – tan2B) – tan2A(sec2B – tan2B)

= sec2A – tan2A                -(Using sec2θ – tan2θ = 1)

= 1

Hence, LHS = RHS(Proved)

Question 9. 

Solution:

We have

Taking RHS

×

×

Hence, RHS = LHS(Proved)

Question 10. 

Solution:

We have

Taking LHS

Using 1 + tan2x = sec2x and 1 + cot2x = cosec2x, we get

Using a2 + b2 = (a + b)2 – 2ab, we get

Hence, LHS = RHS (Proved)

Question 11. 

Solution:

We have

Taking LHS

By using the formulas cotθ = cosθ/sinθ and tanθ = sinθ/cosθ, we get

Using a3+b3 = (a + b)(a2 + b2 – ab), we get  

                                  

= 1 – (sin2θ + cos2θ) + sinθcosθ

= 1 – 1 + sinθcosθ

= sinθcosθ

Hence, LHS = RHS (Proved)

Question 12.

Solution:

We have

Taking LHS

     

Hence, LHS = RHS(Proved)

Question 13. (1 + tanαtanβ)2 + (tanα – tanβ)2  = sec2αsec2β

Solution:

We have

(1 + tanαtanβ)2 + (tanα – tanβ)2 = sec^2αsec2β

Taking LHS

= (1 + tanαtanβ)2 + (tanα – tanβ)2

= (1 + tan2αtan2β + 2tanαtanβ) + (tan2α + tan2β – 2tanαtanβ)

= 1 + tan2αtan2β + tan2α + tan2β

= (1 + tan2β) + tan2α(1 + tan2β)

= (1 + tan2β)(1 + tan2α)

= sec2αsec2β

Hence, LHS = RHS (Proved)


Article Tags :