Open In App

Framing in Data Link Layer

Frames are the units of digital transmission, particularly in computer networks and telecommunications. Frames are comparable to the packets of energy called photons in the case of light energy. Frame is continuously used in Time Division Multiplexing process. 

Framing is a point-to-point connection between two computers or devices consisting of a wire in which data is transmitted as a stream of bits. However, these bits must be framed into discernible blocks of information. Framing is a function of the data link layer. It provides a way for a sender to transmit a set of bits that are meaningful to the receiver. Ethernet, token ring, frame relay, and other data link layer technologies have their own frame structures. Frames have headers that contain information such as error-checking codes. 



At the data link layer, it extracts the message from the sender and provides it to the receiver by providing the sender’s and receiver’s addresses. The advantage of using frames is that data is broken up into recoverable chunks that can easily be checked for corruption. 



The process of dividing the data into frames and reassembling it is transparent to the user and is handled by the data link layer.

Framing is an important aspect of data link layer protocol design because it allows the transmission of data to be organized and controlled, ensuring that the data is delivered accurately and efficiently.

Problems in Framing

Types of framing

There are two types of framing: 

1. Fixed-size: The frame is of fixed size and there is no need to provide boundaries to the frame, the length of the frame itself acts as a delimiter.  

2. Variable size: In this, there is a need to define the end of the frame as well as the beginning of the next frame to distinguish. This can be done in two ways: 

  1. Length field – We can introduce a length field in the frame to indicate the length of the frame. Used in Ethernet(802.3). The problem with this is that sometimes the length field might get corrupted.
  2. End Delimiter (ED) – We can introduce an ED(pattern) to indicate the end of the frame. Used in Token Ring. The problem with this is that ED can occur in the data. This can be solved by: 

    1. Character/Byte Stuffing: Used when frames consist of characters. If data contains ED then, a byte is stuffed into data to differentiate it from ED. 

    Let ED = “$” –> if data contains ‘$’ anywhere, it can be escaped using ‘\O’ character. 
    –> if data contains ‘\O$’ then, use ‘\O\O\O$'($ is escaped using \O and \O is escaped using \O).

Disadvantage – It is very costly and obsolete method. 

2. Bit Stuffing: Let ED = 01111 and if data = 01111 
–> Sender stuffs a bit to break the pattern i.e. here appends a 0 in data = 011101. 
–> Receiver receives the frame. 
–> If data contains 011101, receiver removes the 0 and reads the data. 

Examples: 

--> 01101000110110
--> 1100101001

framing in the Data Link Layer also presents some challenges, which include:

Variable frame length: The length of frames can vary depending on the data being transmitted, which can lead to inefficiencies in transmission. To address this issue, protocols such as HDLC and PPP use a flag sequence to mark the start and end of each frame.

Bit stuffing: Bit stuffing is a technique used to prevent data from being interpreted as control characters by inserting extra bits into the data stream. However, bit stuffing can lead to issues with synchronization and increase the overhead of the transmission.

Synchronization: Synchronization is critical for ensuring that data frames are transmitted and received correctly. However, synchronization can be challenging, particularly in high-speed networks where frames are transmitted rapidly.

Error detection: Data Link Layer protocols use various techniques to detect errors in the transmitted data, such as checksums and CRCs. However, these techniques are not foolproof and can miss some types of errors.

Efficiency: Efficient use of available bandwidth is critical for ensuring that data is transmitted quickly and reliably. However, the overhead associated with framing and error detection can reduce the overall efficiency of the transmission.

Article Tags :