Open In App

Back-off Algorithm for CSMA/CD

Prerequisite – Basics of CSMA/ CD, Collision Detection in CSMA/CD 

Back-off algorithm is a collision resolution mechanism which is used in random access MAC protocols (CSMA/CD). This algorithm is generally used in Ethernet to schedule re-transmissions after collisions. If a collision takes place between 2 stations, they may restart transmission as soon as they can after the collision. This will always lead to another collision and form an infinite loop of collisions leading to a deadlock. To prevent such scenario back-off algorithm is used. Let us consider a scenario of 2 stations A and B transmitting some data: 



 After a collision, time is divided into discrete slots (Tslot) whose length is equal to 2t, where t is the maximum propagation delay in the network. The stations involved in the collision randomly pick an integer from the set K i.e {0, 1}. This set is called the contention window. If the sources collide again because they picked the same integer, the contention window size is doubled and it becomes {0, 1, 2, 3}. Now the sources involved in the second collision randomly pick an integer from the set {0, 1, 2, 3} and wait for that number of time slots before trying again. Before they try to transmit, they listen to the channel and transmit only if the channel is idle. This causes the source which picked the smallest integer in the contention window to succeed in transmitting its frame. So, the Back-off algorithm defines a waiting time for the stations involved in collision, i.e. for how much time the station should wait to re-transmit.



Waiting time = back–off time
Let n = collision number or re-transmission serial number. 
Then, 
Waiting time = K * Tslot
where K = [0, 2n – 1 ]  

Example – Case-1 : Suppose 2 stations A and B start transmitting data (Packet 1) at the same time then, collision occurs. So, the collision number n for both their data (Packet 1) = 1. Now, both the station randomly pick an integer from the set K i.e. {0, 1}.

Probability that A wins = 1/4
Probability that B wins = 1/4
Probability of collision  = 2/4

Case-2: Assume that A wins in Case 1 and transmitted its data(Packet 1). Now, as soon as B transmits its packet 1, A transmits its packet 2. Hence, collision occurs. Now collision no. n becomes 1 for packet 2 of A and becomes 2 for packet 1 of B. For packet 2 of A, K = {0, 1} For packet 1 of B, K = {0, 1, 2, 3} 

Probability that A wins = 5/8
Probability that B wins = 1/8
Probability of collision  = 2/8

So, the probability of collision decreases as compared to Case 1. 

Here are some of its key features:

When a collision occurs, the transmitting device waits for a random amount of time before retransmitting the packet. The random delay helps to prevent multiple devices from retransmitting their packets simultaneously and causing another collision.

The random delay time is determined using an exponential back-off algorithm. The delay time starts at a minimum value and doubles after each collision, up to a maximum value. The maximum delay time is usually set to 1024 slot times, where a slot time is the time it takes for a signal to travel from one end of the network segment to the other.

The back-off algorithm is implemented in hardware on the network interface card (NIC) of each device. When a collision is detected, the NIC generates a random number between 0 and 2^n-1, where n is the number of collisions that have occurred. The NIC then multiplies the random number by the slot time to determine the delay time before retransmitting.

If the maximum number of retransmissions is reached without successful transmission, the device gives up and reports a transmission error.

Advantage –

Disadvantages –

GATE Practice Question –

  1. GATE-CS-2004 | Question 90
  2. GATE-CS-2016 (Set 2) | Question 34
  3. GATE-IT-2004 | Question 85

Article Tags :