Sum of all elements in an array between zeros

Given an array arr[] of N integers, the task is to find the sum of all elements between two zeros in the given array. If possible, then print all the sum, else print “-1”.

Note: There is no continuous zero in the given array.

Examples:

Input: arr[] = { 1, 0, 3, 4, 0, 4, 4, 0, 2, 1, 4, 0, 3 }
Output: 7 8 7
Explanation:
The sum of elements between every zero are:
3 + 4 = 7
4 + 4 = 8
2 + 1 + 4 = 7

Input: arr[] = { 1, 3, 4, 6, 0}
Output: -1



Approach:

  1. Traverse the given array arr[] and find the first index with element 0.
  2. If any element with value zero occurs, then start storing the sum of elements after it in a vector(say A[]) untill next zero occurs.
  3. Repeat above steps for every zero occurs.
  4. Print the elements stored in A[].

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
  
#include "bits/stdc++.h"
using namespace std;
  
// Function to find the sum between two
// zeros in the given array arr[]
void sumBetweenZero(int arr[], int N)
{
  
    int i = 0;
  
    // To store the sum of element
    // between two zeros
    vector<int> A;
  
    // To store the sum
    int sum = 0;
  
    // Find first index of 0
    for (i = 0; i < N; i++) {
        if (arr[i] == 0) {
            i++;
            break;
        }
    }
  
    // Traverse the given array arr[]
    for (; i < N; i++) {
  
        // If 0 occurs then add it to A[]
        if (arr[i] == 0) {
            A.push_back(sum);
            sum = 0;
        }
  
        // Else add element to the sum
        else {
            sum += arr[i];
        }
    }
  
    // Print all the sum stored in A
    for (int i = 0; i < A.size(); i++) {
        cout << A[i] << ' ';
    }
  
    // If there is no such element print -1
    if (A.size() == 0)
        cout << "-1";
}
  
// Driver Code
int main()
{
    int arr[] = { 1, 0, 3, 4, 0, 4, 4,
                  0, 2, 1, 4, 0, 3 };
  
    int N = sizeof(arr) / sizeof(arr[0]);
  
    // Function call
    sumBetweenZero(arr, N);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
  
class GFG{
  
// Function to find the sum between two
// zeros in the given array arr[]
static void sumBetweenZero(int arr[], int N)
{
    int i = 0;
  
    // To store the sum of element
    // between two zeros
    Vector<Integer> A = new Vector<Integer>();
  
    // To store the sum
    int sum = 0;
  
    // Find first index of 0
    for(i = 0; i < N; i++)
    {
       if (arr[i] == 0)
       {
           i++;
           break;
       }
    }
  
    // Traverse the given array arr[]
    for(; i < N; i++) 
    {
         
       // If 0 occurs then add it to A[]
       if (arr[i] == 0)
       {
           A.add(sum);
           sum = 0;
       }
         
       // Else add element to the sum
       else 
       {
           sum += arr[i];
       }
    }
  
    // Print all the sum stored in A
    for(int j = 0; j < A.size(); j++) 
    {
       System.out.print(A.get(j) + " ");
    }
  
    // If there is no such element print -1
    if (A.size() == 0)
        System.out.print("-1");
}
  
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 1, 0, 3, 4, 0, 4, 4,
                  0, 2, 1, 4, 0, 3 };
    int N = arr.length;
  
    // Function call
    sumBetweenZero(arr, N);
}
}
  
// This code is contributed by gauravrajput1
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

#Python3 program for the above approach
  
# Function to find the sum between two
# zeros in the given array arr[]
def sumBetweenZero(arr, N):
    i = 0
  
    # To store the sum of the element
    # between two zeros
    A = []
  
    # To store the sum
    sum = 0
  
    # Find first index of 0
    for i in range(N):
        if (arr[i] == 0):
            i += 1
            break
    k = i
  
    # Traverse the given array arr[]
    for i in range(k, N, 1):
          
        # If 0 occurs then add it to A[]
        if (arr[i] == 0):
            A.append(sum)
            sum = 0
  
        # Else add element to the sum
        else:
            sum += arr[i]
  
    # Print all the sum stored in A
    for i in range(len(A)):
        print(A[i], end = ' ')
  
    # If there is no such element print -1
    if (len(A) == 0):
        print("-1")
  
# Driver Code
if __name__ == '__main__':
      
    arr = [ 1, 0, 3, 4, 0, 4, 4,
            0, 2, 1, 4, 0, 3 ]
  
    N = len(arr)
  
    # Function call
    sumBetweenZero(arr, N)
  
# This code is contributed by Bhupendra_Singh
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
using System.Collections.Generic;
  
class GFG{
  
// Function to find the sum between two
// zeros in the given array []arr
static void sumBetweenZero(int []arr, int N)
{
    int i = 0;
  
    // To store the sum of element
    // between two zeros
    List<int> A = new List<int>();
  
    // To store the sum
    int sum = 0;
  
    // Find first index of 0
    for(i = 0; i < N; i++)
    {
       if (arr[i] == 0)
       {
           i++;
           break;
       }
    }
  
    // Traverse the given array []arr
    for(; i < N; i++) 
    {
          
       // If 0 occurs then add it to []A
       if (arr[i] == 0)
       {
           A.Add(sum);
           sum = 0;
       }
         
       // Else add element to the sum
       else
       {
           sum += arr[i];
       }
    }
      
    // Print all the sum stored in A
    for(int j = 0; j < A.Count; j++) 
    {
       Console.Write(A[j] + " ");
    }
  
    // If there is no such element print -1
    if (A.Count == 0)
        Console.Write("-1");
}
  
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 1, 0, 3, 4, 0, 4, 4,
                  0, 2, 1, 4, 0, 3 };
    int N = arr.Length;
  
    // Function call
    sumBetweenZero(arr, N);
}
}
  
// This code is contributed by gauravrajput1
chevron_right

Output:
7 8 7

Time Complexity: O(N), where N is the length of the array.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


before giving up , just think why u started

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :