Sum of all elements in an array between zeros

Given an array arr[] of N integers, the task is to find the sum of all elements between two zeros in the given array. If possible, then print all the sum, else print “-1”.

Note: There is no continuous zero in the given array.

Examples:

Input: arr[] = { 1, 0, 3, 4, 0, 4, 4, 0, 2, 1, 4, 0, 3 }
Output: 7 8 7
Explanation:
The sum of elements between every zero are:
3 + 4 = 7
4 + 4 = 8
2 + 1 + 4 = 7

Input: arr[] = { 1, 3, 4, 6, 0}
Output: -1



Approach:

  1. Traverse the given array arr[] and find the first index with element 0.
  2. If any element with value zero occurs, then start storing the sum of elements after it in a vector(say A[]) untill next zero occurs.
  3. Repeat above steps for every zero occurs.
  4. Print the elements stored in A[].

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
  
#include "bits/stdc++.h"
using namespace std;
  
// Function to find the sum between two
// zeros in the given array arr[]
void sumBetweenZero(int arr[], int N)
{
  
    int i = 0;
  
    // To store the sum of element
    // between two zeros
    vector<int> A;
  
    // To store the sum
    int sum = 0;
  
    // Find first index of 0
    for (i = 0; i < N; i++) {
        if (arr[i] == 0) {
            i++;
            break;
        }
    }
  
    // Traverse the given array arr[]
    for (; i < N; i++) {
  
        // If 0 occurs then add it to A[]
        if (arr[i] == 0) {
            A.push_back(sum);
            sum = 0;
        }
  
        // Else add element to the sum
        else {
            sum += arr[i];
        }
    }
  
    // Print all the sum stored in A
    for (int i = 0; i < A.size(); i++) {
        cout << A[i] << ' ';
    }
  
    // If there is no such element print -1
    if (A.size() == 0)
        cout << "-1";
}
  
// Driver Code
int main()
{
    int arr[] = { 1, 0, 3, 4, 0, 4, 4,
                  0, 2, 1, 4, 0, 3 };
  
    int N = sizeof(arr) / sizeof(arr[0]);
  
    // Function call
    sumBetweenZero(arr, N);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
  
class GFG{
  
// Function to find the sum between two
// zeros in the given array arr[]
static void sumBetweenZero(int arr[], int N)
{
    int i = 0;
  
    // To store the sum of element
    // between two zeros
    Vector<Integer> A = new Vector<Integer>();
  
    // To store the sum
    int sum = 0;
  
    // Find first index of 0
    for(i = 0; i < N; i++)
    {
       if (arr[i] == 0)
       {
           i++;
           break;
       }
    }
  
    // Traverse the given array arr[]
    for(; i < N; i++) 
    {
         
       // If 0 occurs then add it to A[]
       if (arr[i] == 0)
       {
           A.add(sum);
           sum = 0;
       }
         
       // Else add element to the sum
       else 
       {
           sum += arr[i];
       }
    }
  
    // Print all the sum stored in A
    for(int j = 0; j < A.size(); j++) 
    {
       System.out.print(A.get(j) + " ");
    }
  
    // If there is no such element print -1
    if (A.size() == 0)
        System.out.print("-1");
}
  
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 1, 0, 3, 4, 0, 4, 4,
                  0, 2, 1, 4, 0, 3 };
    int N = arr.length;
  
    // Function call
    sumBetweenZero(arr, N);
}
}
  
// This code is contributed by gauravrajput1

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

#Python3 program for the above approach
  
# Function to find the sum between two
# zeros in the given array arr[]
def sumBetweenZero(arr, N):
    i = 0
  
    # To store the sum of the element
    # between two zeros
    A = []
  
    # To store the sum
    sum = 0
  
    # Find first index of 0
    for i in range(N):
        if (arr[i] == 0):
            i += 1
            break
    k = i
  
    # Traverse the given array arr[]
    for i in range(k, N, 1):
          
        # If 0 occurs then add it to A[]
        if (arr[i] == 0):
            A.append(sum)
            sum = 0
  
        # Else add element to the sum
        else:
            sum += arr[i]
  
    # Print all the sum stored in A
    for i in range(len(A)):
        print(A[i], end = ' ')
  
    # If there is no such element print -1
    if (len(A) == 0):
        print("-1")
  
# Driver Code
if __name__ == '__main__':
      
    arr = [ 1, 0, 3, 4, 0, 4, 4,
            0, 2, 1, 4, 0, 3 ]
  
    N = len(arr)
  
    # Function call
    sumBetweenZero(arr, N)
  
# This code is contributed by Bhupendra_Singh

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
using System.Collections.Generic;
  
class GFG{
  
// Function to find the sum between two
// zeros in the given array []arr
static void sumBetweenZero(int []arr, int N)
{
    int i = 0;
  
    // To store the sum of element
    // between two zeros
    List<int> A = new List<int>();
  
    // To store the sum
    int sum = 0;
  
    // Find first index of 0
    for(i = 0; i < N; i++)
    {
       if (arr[i] == 0)
       {
           i++;
           break;
       }
    }
  
    // Traverse the given array []arr
    for(; i < N; i++) 
    {
          
       // If 0 occurs then add it to []A
       if (arr[i] == 0)
       {
           A.Add(sum);
           sum = 0;
       }
         
       // Else add element to the sum
       else
       {
           sum += arr[i];
       }
    }
      
    // Print all the sum stored in A
    for(int j = 0; j < A.Count; j++) 
    {
       Console.Write(A[j] + " ");
    }
  
    // If there is no such element print -1
    if (A.Count == 0)
        Console.Write("-1");
}
  
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 1, 0, 3, 4, 0, 4, 4,
                  0, 2, 1, 4, 0, 3 };
    int N = arr.Length;
  
    // Function call
    sumBetweenZero(arr, N);
}
}
  
// This code is contributed by gauravrajput1

chevron_right


Output:

7 8 7

Time Complexity: O(N), where N is the length of the array.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.