Print nodes of a Binary Search Tree in Top Level Order and Reversed Bottom Level Order alternately

Given a Binary Search Tree, the task is to print the nodes of the BST in the following order:

Examples:

Input:


Output: 27 42 31 19 10 14 35
Explanation:
Level 1 from left to right: 27
Level 3 from right to left: 42 31 19 10
Level 2 from left to right: 14 35

Input:


Output: 25 48 38 28 12 5 20 36 40 30 22 10

Approach: To solve the problem, the idea is to store the nodes of BST in ascending and descending order of levels and node values and print all the nodes of the same level alternatively between ascending and descending order. Follow the steps below to solve the problem:



Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Structure of a BST node
struct node {
    int data;
    struct node* left;
    struct node* right;
};
  
// Utility function to create a new BST node
struct node* newnode(int d)
{
    struct node* temp
        = (struct node*)malloc(sizeof(struct node));
    temp->left = NULL;
    temp->right = NULL;
    temp->data = d;
    return temp;
}
  
// Function to print the nodes of a
// BST in Top Level Order and Reversed
// Bottom Level Order alternatively
void printBST(node* root)
{
    // Stores the nodes in descending order
    // of the level and node values
    priority_queue<pair<int, int> > great;
  
    // Stores the nodes in ascending order
    // of the level and node values
  
    priority_queue<pair<int, int>,
                   vector<pair<int, int> >,
                   greater<pair<int, int> > >
        small;
  
    // Initialize a stack for
    // level order traversal
    stack<pair<node*, int> > st;
  
    // Push the root of BST
    // into the stack
    st.push({ root, 1 });
  
    // Perform Level Order Traversal
    while (!st.empty()) {
  
        // Extract and pop the node
        // from the current level
        node* curr = st.top().first;
  
        // Stores level of current node
        int level = st.top().second;
        st.pop();
  
        // Store in the priority queues
        great.push({ level, curr->data });
        small.push({ level, curr->data });
  
        // Traverse left subtree
        if (curr->left)
            st.push({ curr->left, level + 1 });
  
        // Traverse right subtree
        if (curr->right)
            st.push({ curr->right, level + 1 });
    }
  
    // Stores the levels that are printed
    unordered_set<int> levelsprinted;
  
    // Print the nodes in the required manner
    while (!small.empty() && !great.empty()) {
  
        // Store the top level of traversal
        int toplevel = small.top().first;
  
        // If the level is already printed
        if (levelsprinted.find(toplevel)
            != levelsprinted.end())
            break;
  
        // Otherwise
        else
            levelsprinted.insert(toplevel);
  
        // Print nodes of same level
        while (!small.empty()
               && small.top().first == toplevel) {
            cout << small.top().second << " ";
            small.pop();
        }
  
        // Store the bottom level of traversal
        int bottomlevel = great.top().first;
  
        // If the level is already printed
        if (levelsprinted.find(bottomlevel)
            != levelsprinted.end()) {
            break;
        }
        else {
            levelsprinted.insert(bottomlevel);
        }
  
        // Print the nodes of same level
        while (!great.empty()
               && great.top().first == bottomlevel) {
            cout << great.top().second << " ";
            great.pop();
        }
    }
}
  
// Driver Code
int main()
{
    /*
    Given BST
  
                                25
                              /     \
                            20      36
                           /  \      / \
                          10   22   30 40
                         /  \      /   / \
                        5   12    28  38 48
    */
  
    // Creating the BST
    node* root = newnode(25);
    root->left = newnode(20);
    root->right = newnode(36);
    root->left->left = newnode(10);
    root->left->right = newnode(22);
    root->left->left->left = newnode(5);
    root->left->left->right = newnode(12);
    root->right->left = newnode(30);
    root->right->right = newnode(40);
    root->right->left->left = newnode(28);
    root->right->right->left = newnode(38);
    root->right->right->right = newnode(48);
  
    // Function Call
    printBST(root);
  
    return 0;
}
chevron_right

Output:
25 48 38 28 12 5 20 36 40 30 22 10

Time Complexity: O(V log(V)), where V denotes the number of vertices in the given Binary Tree
Auxiliary Space: O(V)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Talk is cheap Show me the code -)

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.


Article Tags :