Open In App

NCERT Solutions Class 11 – Chapter 4 Complex Numbers And Quadratic Equations – Miscellaneous Exercise

Question 1. Evaluate 

Solution:



= [-1 – i]3

= (-1)3 [1 + i]3



= -[13 + i3 + 3 × 1 × i (1 + i)]

= -[1 + i3 + 3i + 3i2]

= -[1 – i + 3i – 3]

= -[2 + 2i]

= 2 – 2i 

Question 2. For any two complex numbers z1 and z2, prove that, Re (z1z2) = Re zRe z2 – Im z1 Im z2

Solution:

Let’s assume z1 = x1 + iy1 and z2 = x2 + iy2 as two complex numbers

Product of these complex numbers, z1z2

z1z2 = (x1 + iy1)(x2 + iy2)

= x1(x2 + iy2) + iy1(x2 + iy2)

= x1x2 + ix1y2 + iy1x2 + i2y1y2

= x1x2 + ix1y2 + iy1x2 – y1y2             [i2 = -1]

= (x1x2 – y1y2) + i(x1y2 + y1x2)

Now, 

Re(z1z2) = x1x2 – y1y2

⇒ Re(z1z2) = Rez1Rez2 – Imz1Imz2

Hence, proved.

Question 3. Reduce to the standard form 

Solution:

On multiplying numerator and denominator by (14+5i)

Hence, this is the required standard form.

Question 4. If x – iy =  prove that (x2 + y2)2

Solution:

Given:

x – iy = 

On multiplying numerator and denominator by (c+id)

So,

(x – iy)2 

x2 – y2 – 2ixy  

On comparing real and imaginary parts, we get

x2 – y2, -2xy =       (1)

(x2 + y2)2 = (x2 – y2)2 + 4x2y2

Hence proved

Question 5. If z1 = 2 – i, z2 = 1 + i, find 

Solution:

Given, z1 = 2 – i, z2 = 1 + i

Hence, the value of  is √2

Question 6. If a + ib =  , prove that a2 + b2

Solution:

Given:

a + ib = 

On comparing the real and imaginary parts, we have

a =  and b = 

Therefore,

a2 + b2

Hence, proved,

a2 + b2

Question 7. Let z1 = 2 – i, z2 = -2 + i. Find

(i) 

(ii) 

Solution:

(i) Given:

z1 = 2 – i, z2 = -2 + i

(i) z1z2 = (2 – i)(-2 + i) = -4 + 2i + 2i – i2 = -4 + 4i – (-1) = -3 + 4i

 = 2 + i

Therefore,

On multiplying numerator and denominator by (2 – i), we get

On comparing the real parts, we have

(ii) 

On comparing the imaginary part, we get

 = 0

Question 8. Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of – 6 – 24i.

Solution:

Let us assume z = (x – iy) (3 + 5i)

z = 3x + xi – 3yi – 5yi2 = 3x + 5xi – 3yi + 5y = (3x + 5y) + i(5x – 3y)

Therefore,

 =(3x + 5y) – i(5x – 3y)

Also given,  = -6 – 24i 

And,

(3x + 5y) – i(5x – 3y) = -6 -24i

After equating real and imaginary parts, we get

3x + 5y = -6 …… (i)

5x – 3y = 24 …… (ii)

After doing (i) x 3 + (ii) x 5, we have

(9x + 15y) + (25x – 15y) = -18 + 120

34x = 102

x = 102/34 = 3

Putting the value of x in equation (i), we get

3(3) + 5y = -6

5y = -6 – 9 = -15

y = -3

Therefore, the values of and y are 3 and –3 respectively.

Question 9. Find the modulus of 

Solution:

Question 10. If (x + iy)3 = u + iv, then show that  = 4(x2 – y2)

Solution:

(x + iy)3 = u + iv

x3 + (iy) + 3 × x × iy(x + iy) = u + iv

x3 + i3y3 + 3x2yi + 3xy2 = u + iv

x3 – iy3 + 3x2yi – 3xy2 = u + iv

(x3 – 3xy2) + i(3x2y – y3) = u + iv

On equating real and imaginary parts, we get

u = x3 – 3xy2, v = 3x2y – y3

= x2 – 3y2 + 3x2 – y2

= 4x2 – 4y2

= 4(x2 – y2)

Hence proved

Question 11. If α and β are different complex numbers with |β| = 1, then find 

Solution:

Assume α = a + ib and β = x + iy

Given: |β| = 1

So, 

= x2 + y2 = 1            ….(1)

 

= 1

Question 12. Find the number of non-zero integral solutions of the equation |1 – i|x = 2x

Solution:

|1 – i|x = 2t

x = 2x

2x – x = 0

Thus, ‘0’ is the only integral solution of the given equation.

Therefore, the number of non-zero integral solutions of the given equation is 0.

Question 13. If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.

Solution:

Given:

(a + ib)(c + id)(e + if)(g + ih) = A + iB

Therefore,

|(a + ib)(c + id)(e + if)(g + ih)| = |A + iB|

= |(a + ib)| × |(c + id)| × |(e + if)| × |(g + ih)| = |A + iB|

On squaring both sides, we get

(a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2

Hence, proved.

Question 14. If, then find the least positive integral value of m. 

Solution:

im = 1

Hence, m = 4k, where k is some integer.

Hence, the least positive integer is 1.

Thus, the least positive integral value of m is 4 (= 4 × 1).


Article Tags :