Minimum difference between any two primes from the given range

Given two integers L and R, the task is to find the minimum difference between any two prime numbers in the range [L, R].

Examples:

Input: L = 21, R = 50
Output: 2
(29, 31) and (41, 43) are the only valid pairs
that give the minimum difference.



Input: L = 1, R = 11
Output: 1
The difference between (2, 3) is minimum.

Approach:

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
const int sz = 1e5;
bool isPrime[sz + 1];
  
// Function for Sieve of Eratosthenes
void sieve()
{
    memset(isPrime, true, sizeof(isPrime));
  
    isPrime[0] = isPrime[1] = false;
  
    for (int i = 2; i * i <= sz; i++) {
        if (isPrime[i]) {
            for (int j = i * i; j < sz; j += i) {
                isPrime[j] = false;
            }
        }
    }
}
  
// Function to return the minimum difference
// between any two prime numbers
// from the given range [L, R]
int minDifference(int L, int R)
{
  
    // Find the first prime from the range
    int fst = 0;
    for (int i = L; i <= R; i++) {
  
        if (isPrime[i]) {
            fst = i;
            break;
        }
    }
  
    // Find the second prime from the range
    int snd = 0;
    for (int i = fst + 1; i <= R; i++) {
  
        if (isPrime[i]) {
            snd = i;
            break;
        }
    }
  
    // If the number of primes in
    // the given range is < 2
    if (snd == 0)
        return -1;
  
    // To store the minimum difference between
    // two consecutive primes from the range
    int diff = snd - fst;
  
    // Range left to check for primes
    int left = snd + 1;
    int right = R;
  
    // For every integer in the range
    for (int i = left; i <= right; i++) {
  
        // If the current integer is prime
        if (isPrime[i]) {
  
            // If the difference between i
            // and snd is minimum so far
            if (i - snd <= diff) {
  
                fst = snd;
                snd = i;
                diff = snd - fst;
            }
        }
    }
  
    return diff;
}
  
// Driver code
int main()
{
    // Generate primes
    sieve();
  
    int L = 21, R = 50;
  
    cout << minDifference(L, R);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class GFG 
{
      
static int sz = (int) 1e5;
static boolean []isPrime = new boolean [sz + 1];
  
// Function for Sieve of Eratosthenes
static void sieve()
{
    Arrays.fill(isPrime, true);
  
    isPrime[0] = isPrime[1] = false;
  
    for (int i = 2; i * i <= sz; i++)
    {
        if (isPrime[i])
        {
            for (int j = i * i; j < sz; j += i)
            {
                isPrime[j] = false;
            }
        }
    }
}
  
// Function to return the minimum difference
// between any two prime numbers
// from the given range [L, R]
static int minDifference(int L, int R)
{
  
    // Find the first prime from the range
    int fst = 0;
    for (int i = L; i <= R; i++) 
    {
        if (isPrime[i])
        {
            fst = i;
            break;
        }
    }
  
    // Find the second prime from the range
    int snd = 0;
    for (int i = fst + 1; i <= R; i++) 
    {
        if (isPrime[i])
        {
            snd = i;
            break;
        }
    }
  
    // If the number of primes in
    // the given range is < 2
    if (snd == 0)
        return -1;
  
    // To store the minimum difference between
    // two consecutive primes from the range
    int diff = snd - fst;
  
    // Range left to check for primes
    int left = snd + 1;
    int right = R;
  
    // For every integer in the range
    for (int i = left; i <= right; i++)
    {
  
        // If the current integer is prime
        if (isPrime[i]) 
        {
  
            // If the difference between i
            // and snd is minimum so far
            if (i - snd <= diff) 
            {
                fst = snd;
                snd = i;
                diff = snd - fst;
            }
        }
    }
    return diff;
}
  
// Driver code
public static void main(String []args) 
{
      
    // Generate primes
    sieve();
  
    int L = 21, R = 50;
    System.out.println(minDifference(L, R));
}
}
  
// This code is contributed by 29AjayKumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
from math import sqrt
  
sz = int(1e5); 
isPrime = [True] * (sz + 1); 
  
# Function for Sieve of Eratosthenes 
def sieve() :
  
    isPrime[0] = isPrime[1] = False
  
    for i in range(2, int(sqrt(sz)) + 1) :
        if (isPrime[i]) :
            for j in range(i * i, sz, i) :
                isPrime[j] = False
      
# Function to return the minimum difference 
# between any two prime numbers 
# from the given range [L, R] 
def minDifference(L, R) : 
  
    # Find the first prime from the range 
    fst = 0
    for i in range(L, R + 1) :
  
        if (isPrime[i]) :
            fst = i; 
            break
  
    # Find the second prime from the range 
    snd = 0
    for i in range(fst + 1, R + 1) :
  
        if (isPrime[i]) :
            snd = i; 
            break
              
    # If the number of primes in 
    # the given range is < 2 
    if (snd == 0) :
        return -1
  
    # To store the minimum difference between 
    # two consecutive primes from the range 
    diff = snd - fst; 
  
    # Range left to check for primes 
    left = snd + 1
    right = R; 
  
    # For every integer in the range 
    for i in range(left, right + 1) :
  
        # If the current integer is prime 
        if (isPrime[i]) :
  
            # If the difference between i 
            # and snd is minimum so far 
            if (i - snd <= diff) :
  
                fst = snd; 
                snd = i; 
                diff = snd - fst; 
  
    return diff; 
  
# Driver code 
if __name__ == "__main__"
  
    # Generate primes 
    sieve(); 
  
    L = 21; R = 50
  
    print(minDifference(L, R)); 
  
# This code is contributed by AnkitRai01
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
                      
class GFG 
{
      
static int sz = (int) 1e5;
static Boolean []isPrime = new Boolean [sz + 1];
  
// Function for Sieve of Eratosthenes
static void sieve()
{
    for(int i = 2; i< sz + 1; i++)
        isPrime[i] = true;
  
    for (int i = 2; i * i <= sz; i++)
    {
        if (isPrime[i])
        {
            for (int j = i * i; j < sz; j += i)
            {
                isPrime[j] = false;
            }
        }
    }
}
  
// Function to return the minimum difference
// between any two prime numbers
// from the given range [L, R]
static int minDifference(int L, int R)
{
  
    // Find the first prime from the range
    int fst = 0;
    for (int i = L; i <= R; i++) 
    {
        if (isPrime[i])
        {
            fst = i;
            break;
        }
    }
  
    // Find the second prime from the range
    int snd = 0;
    for (int i = fst + 1; i <= R; i++) 
    {
        if (isPrime[i])
        {
            snd = i;
            break;
        }
    }
  
    // If the number of primes in
    // the given range is < 2
    if (snd == 0)
        return -1;
  
    // To store the minimum difference between
    // two consecutive primes from the range
    int diff = snd - fst;
  
    // Range left to check for primes
    int left = snd + 1;
    int right = R;
  
    // For every integer in the range
    for (int i = left; i <= right; i++)
    {
  
        // If the current integer is prime
        if (isPrime[i]) 
        {
  
            // If the difference between i
            // and snd is minimum so far
            if (i - snd <= diff) 
            {
                fst = snd;
                snd = i;
                diff = snd - fst;
            }
        }
    }
    return diff;
}
  
// Driver code
public static void Main(String []args) 
{
      
    // Generate primes
    sieve();
  
    int L = 21, R = 50;
    Console.WriteLine(minDifference(L, R));
}
}
  
// This code is contributed by 29AjayKumar
chevron_right

Output:
2



Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : AnkitRai01, 29AjayKumar



Article Tags :