Open In App

Maximize sum of odd-indexed array elements by repeatedly selecting at most 2*M array elements from the beginning

Given an array arr[] consisting of N integers and an integer M (initially 1), the task is to find the maximum sum of array elements chosen by Player A when two players A and B plays the game optimally according to the following rules:

Examples:



Input: arr[] = {2, 7, 9, 4, 4}
Output: 10
Explanation:
Initially the array is arr[] = {2, 7, 9, 4, 4} and the value of M = 1, Below are the order of ch0osing array elements by both the players:
Player A: The number of elements can be chosen over the range [1, 2*M] i.e., [1, 2]. So, choose element {2} and remove it. Now the array modifies to {7, 9, 4, 4} and the value of M is max(M, X) = max(1, 1) = 1(X is 1).
Player B: The number of elements can be chosen over the range [1, 2*M] i.e., [1, 2]. So, choose element {7, 9} and remove it. Now the array modifies to {4, 4} and the value of M is max(M, X) = max(1, 2) = 2(X is 2).
Player A: The number of elements can be chosen over the range [1, 2*2] i.e., [1, 1]. So, choose element {4, 4} and remove it. Now the array becomes empty.

Therefore, the sum of elements chosen by the Player A is 2 + 4 + 4 = 10.



Input: arr[] = {1}
Output: 1

 

Naive Approach: The simplest approach is to solve the given problem is to use recursion and generate all possible combinations of choosing elements for both the players from the beginning according to the given rules and print the maximum sum of chosen elements obtained for Player A. Follow the below steps to solve the given problem:

Below is the implementation of the above approach:




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Sum of all numbers in the array
// after start index
int sum(int arr[], int start, int N)
{
    int sum1 = 0;
    for(int i = start; i < N; i++)
    {
        sum1 += arr[i];
    }
    return sum1;
}
 
// Function to find the maximum sum of
// array elements chosen by Player A
// according to the given criteria
int recursiveChoosing(int arr[], int start,
                      int M, int N)
{
     
    // Corner Case
    if (start >= N)
    {
        return 0;
    }
 
    // Check if all the elements can
    // be taken
    if (N - start <= 2 * M)
    {
         
        // If the difference is less than
        // or equal to the available
        // chances then pick all numbers
        return sum(arr, start, N);
    }
 
    int psa = 0;
 
    // Sum of all numbers in the array
    int total = sum(arr, start, N);
 
    // Explore each element X
 
    // Skipping the k variable as per
    // the new updated chance of utility
    for(int x = 1; x < 2 * M + 1; x++)
    {
         
        // Sum of elements for Player A
        int psb = recursiveChoosing(arr, start + x,
                                    max(x, M), N);
 
        // Even chance sum can be obtained
        // by subtracting the odd chances
        // sum - total and picking up the
        // maximum from that
        psa = max(psa, total - psb);
    }
 
    // Return the maximum sum of odd chances
    return psa;
}
 
// Driver Code
int main()
{
     
    // Given array arr[]
    int arr[] = { 2, 7, 9, 4, 4 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    cout << recursiveChoosing(arr, 0, 1, N);
}
 
// This code is contributed by ipg2016107




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG{
 
// Function to find the maximum sum of
// array elements chosen by Player A
// according to the given criteria
static int recursiveChoosing(int arr[], int start,
                             int M, int N)
{
 
    // Corner Case
    if (start >= N)
    {
        return 0;
    }
 
    // Check if all the elements can
    // be taken
    if (N - start <= 2 * M)
    {
         
        // If the difference is less than
        // or equal to the available
        // chances then pick all numbers
        return sum(arr, start);
    }
 
    int psa = 0;
 
    // Sum of all numbers in the array
    int total = sum(arr, start);
 
    // Explore each element X
 
    // Skipping the k variable as per
    // the new updated chance of utility
    for(int x = 1; x < 2 * M + 1; x++)
    {
         
        // Sum of elements for Player A
        int psb = recursiveChoosing(arr, start + x,
                                    Math.max(x, M), N);
 
        // Even chance sum can be obtained
        // by subtracting the odd chances
        // sum - total and picking up the
        // maximum from that
        psa = Math.max(psa, total - psb);
    }
 
    // Return the maximum sum of odd chances
    return psa;
}
 
// Sum of all numbers in the array after start index
static int sum(int arr[], int start)
{
    int sum = 0;
    for(int i = start; i < arr.length; i++)
    {
        sum += arr[i];
    }
    return sum;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given array arr[]
    int arr[] = { 2, 7, 9, 4, 4 };
    int N = arr.length;
 
    // Function Call
    System.out.print(recursiveChoosing(
        arr, 0, 1, N));
}
}
 
// This code is contributed by Kingash




# Python program for the above approach
 
# Function to find the maximum sum of
# array elements chosen by Player A
# according to the given criteria
def recursiveChoosing(arr, start, M):
   
    # Corner Case
    if start >= N:
        return 0
       
    # Check if all the elements can
    # be taken
    if N - start <= 2 * M:
       
        # If the difference is less than
        # or equal to the available
        # chances then pick all numbers
        return sum(arr[start:])
       
    psa = 0
     
    # Sum of all numbers in the array
    total = sum(arr[start:])
     
    # Explore each element X
     
    # Skipping the k variable as per
    # the new updated chance of utility
    for x in range(1, 2 * M + 1):
       
        # Sum of elements for Player A
        psb = recursiveChoosing(arr,
                            start + x, max(x, M))
         
        # Even chance sum can be obtained
        # by subtracting the odd chances
        # sum - total and picking up the
        # maximum from that
        psa = max(psa, total - psb) 
         
    # Return the maximum sum of odd chances
    return psa
 
# Driver Code
 
# Given array arr[]
arr = [2, 7, 9, 4, 4]
N = len(arr)
 
# Function Call
print(recursiveChoosing(arr, 0, 1))




// C# program for the above approach
using System;
         
class GFG{
     
// Function to find the maximum sum of
// array elements chosen by Player A
// according to the given criteria
static int recursiveChoosing(int[] arr, int start,
                             int M, int N)
{
     
    // Corner Case
    if (start >= N)
    {
        return 0;
    }
  
    // Check if all the elements can
    // be taken
    if (N - start <= 2 * M)
    {
         
        // If the difference is less than
        // or equal to the available
        // chances then pick all numbers
        return sum(arr, start);
    }
  
    int psa = 0;
  
    // Sum of all numbers in the array
    int total = sum(arr, start);
  
    // Explore each element X
  
    // Skipping the k variable as per
    // the new updated chance of utility
    for(int x = 1; x < 2 * M + 1; x++)
    {
         
        // Sum of elements for Player A
        int psb = recursiveChoosing(arr, start + x,
                                    Math.Max(x, M), N);
  
        // Even chance sum can be obtained
        // by subtracting the odd chances
        // sum - total and picking up the
        // maximum from that
        psa = Math.Max(psa, total - psb);
    }
  
    // Return the maximum sum of odd chances
    return psa;
}
  
// Sum of all numbers in the array after start index
static int sum(int[] arr, int start)
{
    int sum = 0;
    for(int i = start; i < arr.Length; i++)
    {
        sum += arr[i];
    }
    return sum;
}
     
// Driver Code
public static void Main()
{
     
    // Given array arr[]
    int[] arr = { 2, 7, 9, 4, 4 };
    int N = arr.Length;
  
    // Function Call
    Console.WriteLine(recursiveChoosing(
        arr, 0, 1, N));
}
}
 
// This code is contributed by susmitakundugoaldanga




<script>
 
// Javascript program for the above approach
 
// Sum of all numbers in the array
// after start index
function sum(arr, start, N)
{
    var sum1 = 0;
    for(var i = start; i < N; i++)
    {
        sum1 += arr[i];
    }
    return sum1;
}
 
// Function to find the maximum sum of
// array elements chosen by Player A
// according to the given criteria
function recursiveChoosing(arr, start, M, N)
{
     
    // Corner Case
    if (start >= N)
    {
        return 0;
    }
 
    // Check if all the elements can
    // be taken
    if (N - start <= 2 * M)
    {
         
        // If the difference is less than
        // or equal to the available
        // chances then pick all numbers
        return sum(arr, start, N);
    }
 
    var psa = 0;
 
    // Sum of all numbers in the array
    var total = sum(arr, start, N);
 
    // Explore each element X
 
    // Skipping the k variable as per
    // the new updated chance of utility
    for(var x = 1; x < 2 * M + 1; x++)
    {
         
        // Sum of elements for Player A
        var psb = recursiveChoosing(arr, start + x,
                                    Math.max(x, M), N);
 
        // Even chance sum can be obtained
        // by subtracting the odd chances
        // sum - total and picking up the
        // maximum from that
        psa = Math.max(psa, total - psb);
    }
 
    // Return the maximum sum of odd chances
    return psa;
}
 
// Driver Code
 
// Given array arr[]
var arr = [ 2, 7, 9, 4, 4 ];
var N = arr.length
 
// Function Call
document.write(recursiveChoosing(arr, 0, 1, N));
 
 
</script>

Output: 
10

 

Time Complexity: O(K*2N), where K is over the range [1, 2*M]
Auxiliary Space: O(N2)

Efficient Approach: The above approach can also be optimized by using Dynamic Programming as it has Overlapping Subproblems and Optimal Substructure that can be stored and used further in the same recursive calls.

Therefore, the idea is to use a dictionary to store the state of each recursive call so that the already computed state can be accessed faster and result in less time complexity.

Below is the implementation of the above approach:




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum sum of
// array elements chosen by Player A
// according to the given criteria
int recursiveChoosing(int arr[], int start, int M, map<pair<int,int>,int> dp, int N)
{
    
    // Store the key
    pair<int,int> key(start, M);
 
    // Corner Case
    if(start >= N)
    {
        return 0;
    }
 
    // Check if all the elements can
    // be taken or not
    if(N - start <= 2 * M)
    {
        // If the difference is less than
        // or equal to the available
        // chances then pick all numbers
        int Sum = 0;
        for(int i = start; i < N; i++)
        {
            Sum = Sum + arr[i];
        }
        return Sum;
    }
 
    int sum = 0;
    for(int i = start; i < N; i++)
    {
      sum = sum + arr[i];
    }
    // Find the sum of array elements
    // over the range [start, N]
    int total = sum;
 
    // Checking if the current state is
    // previously calculated or not
 
    // If yes then return that value
    if(dp.find(key) != dp.end())
    {
        return dp[key];
    }
    int psa = 0;
    // Traverse over the range [1, 2 * M]
    for(int x = 1; x < 2 * M + 1; x++)
    {
        // Sum of elements for Player A
        int psb = recursiveChoosing(arr, start + x, max(x, M), dp, N);
        // Even chance sum can be obtained
        // by subtracting the odd chances
        // sum - total and picking up the
        // maximum from that
        psa = max(psa, total - psb);
    }
 
    // Storing the value in dictionary
    dp[key] = psa;
 
    // Return the maximum sum of odd chances
    return dp[key];
}
     
int main()
{
    int arr[] = {2, 7, 9, 4, 4};
    int N = sizeof(arr) / sizeof(arr[0]);
   
    // Stores the precomputed values
    map<pair<int,int>,int> dp;
   
    // Function Call
    cout << recursiveChoosing(arr, 0, 1, dp, N);
 
    return 0;
}
 
// This code is contributed by rameshtravel07.




// Java program for the above approach
import java.util.*;
import java.awt.Point;
public class GFG
{
    // Function to find the maximum sum of
    // array elements chosen by Player A
    // according to the given criteria
    static int recursiveChoosing(int[] arr, int start, int M,
                                 HashMap<Point,Integer> dp)
    {
        
        // Store the key
        Point key = new Point(start, M);
   
        // Corner Case
        if(start >= arr.length)
        {
            return 0;
        }
   
        // Check if all the elements can
        // be taken or not
        if(arr.length - start <= 2 * M)
        {
           
            // If the difference is less than
            // or equal to the available
            // chances then pick all numbers
            int Sum = 0;
            for(int i = start; i < arr.length; i++)
            {
                Sum = Sum + arr[i];
            }
            return Sum;
        }
   
        int sum = 0;
        for(int i = start; i < arr.length; i++)
        {
          sum = sum + arr[i];
        }
       
        // Find the sum of array elements
        // over the range [start, N]
        int total = sum;
   
        // Checking if the current state is
        // previously calculated or not
   
        // If yes then return that value
        if(dp.containsKey(key))
        {
            return dp.get(key);
        }
        int psa = 0;
       
        // Traverse over the range [1, 2 * M]
        for(int x = 1; x < 2 * M + 1; x++)
        {
           
            // Sum of elements for Player A
            int psb = recursiveChoosing(arr, start + x, Math.max(x, M), dp);
           
            // Even chance sum can be obtained
            // by subtracting the odd chances
            // sum - total and picking up the
            // maximum from that
            psa = Math.max(psa, total - psb);
        }
   
        // Storing the value in dictionary
        dp.put(key, psa);
   
        // Return the maximum sum of odd chances
        return dp.get(key);
    }
     
    public static void main(String[] args) {
        int[] arr = {2, 7, 9, 4, 4};
        int N = arr.length;
       
        // Stores the precomputed values
        HashMap<Point,Integer> dp = new HashMap<Point,Integer>();
       
        // Function Call
        System.out.print(recursiveChoosing(arr, 0, 1, dp));
    }
}
 
// This code is contributed by divyesh072019.




# Python program for the above approach
 
# Function to find the maximum sum of
# array elements chosen by Player A
# according to the given criteria
def recursiveChoosing(arr, start, M, dp):
   
    # Store the key
    key = (start, M)
      
    # Corner Case
    if start >= N:
        return 0
       
    # Check if all the elements can
    # be taken or not
    if N - start <= 2 * M:
       
        # If the difference is less than
        # or equal to the available
        # chances then pick all numbers
        return sum(arr[start:])
       
        
    psa = 0
      
    # Find the sum of array elements
    # over the range [start, N]
    total = sum(arr[start:])
      
    # Checking if the current state is
    # previously calculated or not
     
    # If yes then return that value
    if key in dp:
        return dp[key]
        
    # Traverse over the range [1, 2 * M]
    for x in range(1, 2 * M + 1):
          
        # Sum of elements for Player A
        psb = recursiveChoosing(arr,
                          start + x, max(x, M), dp)
          
        # Even chance sum can be obtained
        # by subtracting the odd chances
        # sum - total and picking up the
        # maximum from that
        psa = max(psa, total - psb)
          
    # Storing the value in dictionary
    dp[key] = psa 
      
    # Return the maximum sum of odd chances
    return dp[key] 
 
# Driver Code
 
# Given array arr[]
arr = [2, 7, 9, 4, 4
N = len(arr) 
  
# Stores the precomputed values
dp = {} 
  
# Function Call
print(recursiveChoosing(arr, 0, 1, dp))




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
     
    // Function to find the maximum sum of
    // array elements chosen by Player A
    // according to the given criteria
    static int recursiveChoosing(int[] arr, int start, int M,
                                 Dictionary<Tuple<int,int>,int> dp)
    {
       
        // Store the key
        Tuple<int,int> key = new Tuple<int,int>(start, M);
  
        // Corner Case
        if(start >= arr.Length)
        {
            return 0;
        }
  
        // Check if all the elements can
        // be taken or not
        if(arr.Length - start <= 2 * M)
        {
            // If the difference is less than
            // or equal to the available
            // chances then pick all numbers
            int Sum = 0;
            for(int i = start; i < arr.Length; i++)
            {
                Sum = Sum + arr[i];
            }
            return Sum;
        }
  
        int sum = 0;
        for(int i = start; i < arr.Length; i++)
        {
          sum = sum + arr[i];
        }
        // Find the sum of array elements
        // over the range [start, N]
        int total = sum;
  
        // Checking if the current state is
        // previously calculated or not
  
        // If yes then return that value
        if(dp.ContainsKey(key))
        {
            return dp[key];
        }
        int psa = 0;
        // Traverse over the range [1, 2 * M]
        for(int x = 1; x < 2 * M + 1; x++)
        {
            // Sum of elements for Player A
            int psb = recursiveChoosing(arr, start + x, Math.Max(x, M), dp);
            // Even chance sum can be obtained
            // by subtracting the odd chances
            // sum - total and picking up the
            // maximum from that
            psa = Math.Max(psa, total - psb);
        }
  
        // Storing the value in dictionary
        dp[key] = psa;
  
        // Return the maximum sum of odd chances
        return dp[key];
    }
     
  // Driver code
  static void Main()
  {
    int[] arr = {2, 7, 9, 4, 4};
    int N = arr.Length;
  
    // Stores the precomputed values
    Dictionary<Tuple<int,int>,int> dp = new Dictionary<Tuple<int,int>,int>();
  
    // Function Call
    Console.Write(recursiveChoosing(arr, 0, 1, dp));
  }
}
 
// This code is contributed by divyeshrabadiya07.




<script>
    // Javascript program for the above approach
     
    // Function to find the maximum sum of
    // array elements chosen by Player A
    // according to the given criteria
    function recursiveChoosing(arr, start, M, dp)
    {
        // Store the key
        let key = [start, M];
 
        // Corner Case
        if(start >= N)
        {
            return 0;
        }
 
        // Check if all the elements can
        // be taken or not
        if(N - start <= 2 * M)
        {
            // If the difference is less than
            // or equal to the available
            // chances then pick all numbers
            let sum = 0;
            for(let i = start; i < arr.length; i++)
            {
                sum = sum + arr[i];
            }
            return sum;
        }
 
 
        let psa = 0;
        let sum = 0;
        for(let i = start; i < arr.length; i++)
        {
          sum = sum + arr[i];
        }
        // Find the sum of array elements
        // over the range [start, N]
        let total = sum;
 
        // Checking if the current state is
        // previously calculated or not
 
        // If yes then return that value
        if(dp.has(key))
        {
            return dp[key];
        }
 
        // Traverse over the range [1, 2 * M]
        for(let x = 1; x < 2 * M + 1; x++)
        {
            // Sum of elements for Player A
            let psb = recursiveChoosing(arr,
                              start + x, Math.max(x, M), dp)
 
            // Even chance sum can be obtained
            // by subtracting the odd chances
            // sum - total and picking up the
            // maximum from that
            psa = Math.max(psa, total - psb);
        }
 
        // Storing the value in dictionary
        dp[key] = psa;
 
        // Return the maximum sum of odd chances
        return dp[key];
    }
     
    let arr = [2, 7, 9, 4, 4];
    let N = arr.length;
 
    // Stores the precomputed values
    let dp = new Map();
 
    // Function Call
    document.write(recursiveChoosing(arr, 0, 1, dp))
 
// This code is contributed by suresh07.
</script>

Output: 
10

 

Time Complexity: O(K*N2), where K is over the range [1, 2*M]
Auxiliary Space: O(N2)


Article Tags :