Open In App

Eliminate theta from the equation: tan θ – cot θ = a and cos θ + sin θ = b

Trigonometry is a discipline of mathematics that studies the relationships between the lengths of the sides and angles of a right-angled triangle. Trigonometric functions, also known as goniometric functions, angle functions, or circular functions, are functions that establish the relationship between an angle to the ratio of two of the sides of a right-angled triangle. The six main trigonometric functions are sine, cosine, tangent, cotangent, secant, or cosecant.

Angles defined by the ratios of trigonometric functions are known as trigonometry angles. Trigonometric angles represent trigonometric functions. The value of the angle can be anywhere between 0-360°.



As given in the above figure in a right-angled triangle:



Trigonometric Functions

Trigonometry has 6 basic trigonometric functions, they are sine, cosine, tangent, cosecant, secant, and cotangent. Now let’s look into the trigonometric functions. The six trigonometric functions are as follows,

According to the above image, Trigonometric Ratios are

Sin θ = Perpendicular / Hypotenuse = AB/AC

Cosine θ = Base / Hypotenuse = BC / AC

Tangent θ = Perpendicular / Base = AB / BC

Cosecant θ = Hypotenuse / Perpendicular = AC/AB

Secant θ = Hypotenuse / Base = AC/BC

Cotangent θ = Base / Perpendicular = BC/AB

Reciprocal Identities

Sin θ = 1/ Cosec θ                    OR        Cosec θ = 1/ Sin θ

Cos θ = 1/ Sec θ                       OR        Sec θ = 1 / Cos θ

Cot θ = 1 / Tan θ                     OR         Tan θ = 1 / Cot θ

Cot θ = Cos θ / Sin θ               OR         Tan θ = Sin θ / Cos θ

Tan θ.Cot θ = 1

Values of Trigonometric Ratios

  30°                45°               60°               90°
Sin θ 0 1/2 1/√2 √3/2 1
Cos θ 1 √3/2 1/√2 1/2 0
Tan θ 0 1/√3 1 √3 Not Defined 
 Sec θ Not Defined 2 √2 2/√3 1
Cosec θ 1 2/√3 √2 2 Not Defined 
Cot θ Not Defined √3 1 1/√3 0

Trigonometric Identities of Complementary and Supplementary Angles

Identities of Complementary angles are

sin (90° – θ) = cos θ

cos (90° – θ) = sin θ

tan (90° – θ) = cot θ

cot (90° – θ) = tan θ

sec (90° – θ) = cosec θ

cosec (90° – θ) = sec θ

Identities of supplementary angles

sin (180° – θ) = sin θ

cos (180° – θ) = – cos θ

tan (180° – θ) = – tan θ

cot (180° – θ) = – cot θ

sec (180° – θ) = – sec θ

cosec (180° – θ) = – cosec θ

Quadrants of trigonometry

Eliminate theta from the equation: tan θ – cot θ = a and cos θ + sin θ = b

Solution:    

tan θ – cot θ = a ………. (1)

cos θ + sin θ = b ………. (2)  

Squaring both sides of (2) we get,  

(cos θ + sin θ)2 = (b)2

cos2 θ + sin2 θ + 2cos θ sin θ = b2                                        {  sin2 θ  + cos2 θ = 1 }

                    1 + 2 cos θ sin θ = b2

                          2 cos θ sin θ = b2 – 1 ………. (3)  

Again, from (1) 

we get, (sin θ/cos θ) – (cos θ/sin θ) = a  

          (sin2 θ – cos2 θ)/(cos θ sin θ) = a  

                                   sin2θ – cos2θ = a sin θ cos θ

          (sin θ + cos θ) (sin θ – cos θ) = a ∙ (b2 – 1)/2 ……….                               [by (3)]

                               b(sin θ – cos θ) = (½) a (b2 – 1)                                       [by (2)]  

                           b2 (sin θ – cos θ)2 = (1/4) a2 (b2 – 1)2                            [Squaring both the sides]  

 b2 [(sin θ + cos θ)2 – 4 sinθ cos θ] = (1/4) a2 (b2 – 1)2

                        b2 [b2 – 2 ∙ (b2 – 1)] = (1/4) a2 (b2 – 1)2                                  [from (2) and (3)]  

                                    4b2 (2 – b2) = a2 (b2 – 1)2

which is the required θ-eliminate.

Similar Questions

Question 1: Prove that (cos θ sec θ)/cot θ = tan θ

Solution:

Here we have cos theta sec theta / cot theta = tan theta

Therefore { cos θ sec θ }/ cot θ = tan θ

By taking L.H.S

cos θ sec θ / cot θ

we can write cos θ sec θ as 1  

       = (cos θ sec θ )/cot θ

       = 1/cot θ                            { Cos θ = 1/ Sec θ   therefore Cos θ Sec θ  = 1}

       = tan θ                              { Tan θ = 1 / Cot θ }

Therefore LHS = RHS

{cos θ sec θ}/ cot θ = tan θ

Hence Proved

Question 2: Prove (1 – sin2 θ) sec2 θ = 1

Solution:

We have (1 – sin2 θ )sec2 θ = 1

Take LHS

= (1 – sin2 θ )sec2 θ

= cos2 θ sec2 θ                           { 1 –  sin2 θ =  cos2 θ }

= cos2 θ (1/cos2θ)                     { sec θ = 1 /cos θ    or     sec2 θ = 1/cos2 θ }

= 1

= RHS

Therefore

(1 – sin2 θ)sec2 θ = 1

Hence Proved


Article Tags :