Open In App

Prove that 1/sec A – tan A – 1/cosA = 1/cos A – 1/sec A + tan A

Trigonometry is a discipline of mathematics that studies the relationships between the lengths of the sides and angles of a right-angled triangle. Trigonometric functions, also known as goniometric functions, angle functions, or circular functions, are functions that establish the relationship between an angle to the ratio of two of the sides of a right-angled triangle. The six main trigonometric functions are sine, cosine, tangent, cotangent, secant, or cosecant.

Angles defined by the ratios of trigonometric functions are known as trigonometry angles. Trigonometric angles represent trigonometric functions. The value of the angle can be anywhere between 0-360°.



Right angled triangle

As given in the above figure in a right-angled triangle:

Trigonometric Functions

Trigonometry has 6 basic trigonometric functions, they are sine, cosine, tangent, cosecant, secant, and cotangent. Now let’s look into the trigonometric functions. The six trigonometric functions are as follows,



According to the above image, Trigonometric Ratios are

Sin θ = Perpendicular / Hypotenuse = AB/AC

Cosine θ = Base / Hypotenuse = BC / AC

Tangent θ = Perpendicular / Base = AB / BC

Cosecant θ = Hypotenuse / Perpendicular = AC/AB

Secant θ = Hypotenuse / Base = AC/BC

Cotangent θ = Base / Perpendicular = BC/AB

Reciprocal Identities

Sin θ = 1/ Cosec θ                    OR        Cosec θ = 1/ Sin θ

Cos θ = 1/ Sec θ                       OR        Sec θ = 1 / Cos θ

Cot θ = 1 / Tan θ                     OR         Tan θ = 1 / Cot θ

Cot θ = Cos θ / Sin θ               OR         Tan θ = Sin θ / Cos θ

Tan θ.Cot θ = 1

Some other identities are 

sin2x + cos2x = 1

1 + tan2x = sec2x

1 + cot2x = cosec2x

Trigonometric Identities of Complementary and Supplementary Angles

Identities of Complementary angles are

sin (90° – θ) = cos θ

cos (90° – θ) = sin θ

tan (90° – θ) = cot θ

cot (90° – θ) = tan θ

sec (90° – θ) = cosec θ

cosec (90° – θ) = sec θ

Identities of supplementary angles

sin (180° – θ) = sin θ

cos (180° – θ) = – cos θ

tan (180° – θ) = – tan θ

cot  (180° – θ) = – cot θ

sec (180° – θ) = – sec θ

cosec (180° – θ) = – cosec θ

Values of Trigonometric Ratios

  30° 45° 60° 90°
sin θ 0     1/2                1/√2             √3/2             1
cos θ 1 √3/2 1/√2 1 0
tan θ 0 1/√3 1 √3 Not Defined
sec θ Not Defined 2 √2 2/√3 1
cosec θ 1 2/√3 √2 2 Not Defined
cot θ Not Defined √3 1 1/√3 0

Quadrants of trigonometry

Prove that 1/sec A – tan A – 1/cosA = 1/cos A – 1/sec A + tan A

Solution: 

We have 1/sec A – tan A – 1/cosA = 1/ cos A -1/sec A + tan A

First take LHS 

1/ (sec A – tan A) – 1/cosA 

multiply and divide 1/ (sec A – tan A) by (sec A + tan A)

so now we can write as 

= {1/ (sec A – tan A) × (sec A + tan A)/(sec A + tan A)} – 1/cosA 

= {(sec A + tan A)/ (sec2 A – tan2 A)} – 1/cosA 

= {(sec A + tan A)/ 1} – sec A                        {1 + tan2x = sec2x or sec2x – tan2x = 1}

= sec A + tan A – sec A                                {Sec θ = 1 / Cos θ }

= tan A

Now RHS

1/ cos A -1/sec A + tan A

multiply and divide {1/ (sec A + tan A)} by (sec A – tan A)

Now we can write as 

= 1/ cos A – [{1/ (sec A + tan A)} × (sec A – tan A )/(sec A – tan A)]  

= 1/ cos A – [(sec A – tan A) / (sec2 A – tan2 A)]                 {1 + tan2x = sec2x   or  sec2x – tan2x = 1}

= sec A – [(sec A – tan A) / 1]                                            {Sec θ = 1 / Cos θ}

= sec A    –  sec A + tan A

= tan A

Therefore LHS = RHS 

So, 1/sec A – tan A – 1/cos A = 1/ cos A – 1/sec A + tan A

Hence proved

Similar Questions

Question 1: Prove cot2θ – 1/sin2θ = -1 

Solution:

We have  cot2θ – 1/sin2θ

= cot2θ –  cosec2θ                                     { Cosec2θ = 1/ Sin2 θ }

= – (cosec2θ – cot2θ)                                                  

= -1 

= RHS 

Hence Proved

Question 2: Prove (1 + cot2θ) (1 – cos θ)(1 + cos θ) = 1

Solution:

We have LHS 

= (1 + cot2θ) (1 – cos θ)(1 + cos θ) 

= (1 + cot2θ) (1 – cos2 θ)

= cosec2θ sin2θ                                   {1 + cot2θ = cosec2θ  and 1 – cos2 θ  = sin2θ}

= (1/sin2θ) × sin2θ                              {Cosec2θ = 1/ Sin2θ}

= 1

= RHS

Hence Proved


Article Tags :