Count ways to generate pairs having Bitwise XOR and Bitwise AND equal to X and Y respectively

Given two integers X and Y, the task is to find the total number of ways to generate a pair of integers A and B such that Bitwise XOR and Bitwise AND between A and B is X and Y respectively

Examples:

Input: X = 2, Y = 5
Output: 2
Explanation:
The two possible pairs are (5, 7) and (7, 5).
Pair 1: (5, 7)
Bitwise AND = 5 & 7 = 2
Bitwise XOR = 5 ^ 7 = 5
Pair 2: (7, 5)
Bitwise AND = 7 & 5 = 2
Bitwise XOR = 7 ^ 5 = 5

Input: X = 7, Y = 5
Output: 0

Naive Approach: The simplest approach to solve the problem is to choose the maximum among X and Y and set all its bits and then check all possible pairs from 0 to that maximum number, say M. If for any pair of A and B, A & B and A⊕B becomes equal to X and Y respectively, then increment the count. Print the final value of count after checking for all possible pairs.
Time Complexity: O(M2)
Auxiliary Space: O(1)

Efficient Approach: The idea is to generate all possible combinations of bits at each position. There are 4 possibilities for the ith bit in X and Y which are as follows:



  1. If Xi = 0 and Yi = 1, then Ai = 1 and Bi = 1.
  2. If Xi = 1 and Yi = 1, then no possible bit assignment exist.
  3. If Xi = 0 and Yi = 0 then Ai = 0 and Bi = 0.
  4. If Xi = 1 and Yi = 0 then Ai = 0 and Bi = 1 or Ai = 1 and Bi = 0, where Ai, Bi, Xi, and Yi represent ith bit in each of them.

Follow the steps below to solve the problem:

  1. Initialize the counter as 1.
  2. For the ith bit, if Xiand Yi are equal to 1, then print 0.
  3. If at ith bit, Xi is 1 and Yi is 0 then multiply the counter by 2 as there are 2 options.
  4. After that, divide X and Y each time by 2.
  5. Repeat the above steps for every ith bit until both of them become 0 and print the value of the counter.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
 
#include <iostream>
using namespace std;
 
// Function to return the count of
// possible pairs of A and B whose
// Bitwise XOR is X and Y respectively
int countOfPairs(int x, int y)
{
    // Stores the count of pairs
    int counter = 1;
 
    // Iterate till any bit are set
    while (x || y) {
 
        // Extract i-th bit
        // of X and Y
        int bit1 = x % 2;
        int bit2 = y % 2;
 
        // Divide X and Y by 2
        x >>= 1;
        y >>= 1;
 
        // If Xi = 1 and Yi = 2,
        // multiply counter by 2
        if (bit1 == 1 and bit2 == 0) {
 
            // Increase required count
            counter *= 2;
            continue;
        }
 
        // If Xi =1 and Yi = 1
        if (bit1 & bit2) {
 
            // No answer exists
            counter = 0;
            break;
        }
    }
 
    // Return the final count
    return counter;
}
 
// Driver Code
int main()
{
    // Given X and Y
    int X = 2, Y = 5;
 
    // Function Call
    cout << countOfPairs(X, Y);
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for
// the above approach
import java.util.*;
class GFG{
 
// Function to return the count of
// possible pairs of A and B whose
// Bitwise XOR is X and Y respectively
static int countOfPairs(int x, int y)
{
  // Stores the count of pairs
  int counter = 1;
 
  // Iterate till any bit are set
  while (x > 0 || y > 0)
  {
    // Extract i-th bit
    // of X and Y
    int bit1 = x % 2;
    int bit2 = y % 2;
 
    // Divide X and Y by 2
    x >>= 1;
    y >>= 1;
 
    // If Xi = 1 and Yi = 2,
    // multiply counter by 2
    if (bit1 == 1 && bit2 == 0)
    {
      // Increase required count
      counter *= 2;
      continue;
    }
 
    // If Xi =1 and Yi = 1
    if ((bit1 & bit2) > 0)
    {
      // No answer exists
      counter = 0;
      break;
    }
  }
 
  // Return the final count
  return counter;
}
 
// Driver Code
public static void main(String[] args)
{
  // Given X and Y
  int X = 2, Y = 5;
 
  // Function Call
  System.out.print(countOfPairs(X, Y));
}
}
 
// This code is contributed by Princi Singh
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to return the count of
# possible pairs of A and B whose
# Bitwise XOR is X and Y respectively
def countOfPairs(x, y):
 
    # Stores the count of pairs
    counter = 1
 
    # Iterate till any bit are set
    while(x or y):
 
        # Extract i-th bit
        # of X and Y
        bit1 = x % 2
        bit2 = y % 2
 
        # Divide X and Y by 2
        x >>= 1
        y >>= 1
 
        # If Xi = 1 and Yi = 2,
        # multiply counter by 2
        if (bit1 == 1 and bit2 == 0):
             
            # Increase required count
            counter *= 2
            continue
 
        # If Xi =1 and Yi = 1
        if(bit1 & bit2):
 
            # No answer exists
            counter = 0
            break
 
    # Return the final count
    return counter
 
# Driver Code
 
# Given X and Y
X = 2
Y = 5
 
# Function call
print(countOfPairs(X, Y))
 
# This code is contributed by Shivam Singh
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for
// the above approach
using System;
class GFG{
 
// Function to return the count of
// possible pairs of A and B whose
// Bitwise XOR is X and Y respectively
static int countOfPairs(int x, int y)
{
  // Stores the count of pairs
  int counter = 1;
 
  // Iterate till any bit are set
  while (x > 0 || y > 0)
  {
    // Extract i-th bit
    // of X and Y
    int bit1 = x % 2;
    int bit2 = y % 2;
 
    // Divide X and Y by 2
    x >>= 1;
    y >>= 1;
 
    // If Xi = 1 and Yi = 2,
    // multiply counter by 2
    if (bit1 == 1 && bit2 == 0)
    {
      // Increase required count
      counter *= 2;
      continue;
    }
 
    // If Xi =1 and Yi = 1
    if ((bit1 & bit2) > 0)
    {
      // No answer exists
      counter = 0;
      break;
    }
  }
 
  // Return the readonly count
  return counter;
}
 
// Driver Code
public static void Main(String[] args)
{
  // Given X and Y
  int X = 2, Y = 5;
 
  // Function Call
  Console.Write(countOfPairs(X, Y));
}
}
  
// This code is contributed by Rajput-Ji
chevron_right

Output: 
2






 

Time Complexity: O(log M)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :