Count of integers up to N which are non divisors and non coprime with N

Given an integer N, the task is to find the count of all possible integers less than N satisfying the following properties:

Examples:

Input: N = 10 
Output:
Explanation: 
All possible integers which are less than 10 and are neither divisors nor coprime with 10, are {4, 6, 8}. 
Therefore, the required count is 3.

Input: N = 42 
Ouput: 23

Approach: 
Follow the steps below to solve the problem:



Total count = N – Euler’s totient(N) – Divisor count(N)

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the count
// of integers less than N
// satisfying given conditions
int count(int n)
{
    // Stores Euler counts
    int phi[n + 1] = { 0 };
  
    // Store Divisor counts
    int divs[n + 1] = { 0 };
  
    // Based on Sieve of Eratosthenes
    for (int i = 1; i <= n; i++) {
  
        phi[i] += i;
  
        // Update phi values of all
        // multiples of i
        for (int j = i * 2; j <= n; j += i)
            phi[j] -= phi[i];
  
        // Update count of divisors
        for (int j = i; j <= n; j += i)
            divs[j]++;
    }
  
    // Return the final count
    return (n - phi[n] - divs[n] + 1);
}
  
// Driver Code
int main()
{
  
    int N = 42;
  
    cout << count(N);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement 
// the above approach 
import java.util.Arrays;
  
class GFG{
      
// Function to return the count 
// of integers less than N 
// satisfying given conditions
public static int count(int n) 
      
    // Stores Euler counts 
    int []phi = new int[n + 1];
    Arrays.fill(phi, 0);
  
    // Store Divisor counts 
    int []divs = new int[n + 1];
    Arrays.fill(divs, 0);
      
    // Based on Sieve of Eratosthenes 
    for(int i = 1; i <= n; i++)
    
        phi[i] += i; 
  
        // Update phi values of all 
        // multiples of i 
        for(int j = i * 2; j <= n; j += i) 
            phi[j] -= phi[i]; 
  
        // Update count of divisors 
        for(int j = i; j <= n; j += i) 
            divs[j]++; 
    
  
    // Return the final count 
    return (n - phi[n] - divs[n] + 1); 
  
// Driver Code 
public static void main(String []args) 
    int N = 42
  
    System.out.println(count(N)); 
}
  
// This code is contributed by grand_master
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
  
# Function to return the count
# of integers less than N
# satisfying given conditions
def count(n):
      
    # Stores Euler counts
    phi = [0] * (n + 1)
      
    # Store Divisor counts
    divs = [0] * (n + 1)
      
    # Based on Sieve of Eratosthenes
    for i in range(1, n + 1):
        phi[i] += i
          
        # Update phi values of all
        # multiples of i
        for j in range(i * 2, n + 1, i):
            phi[j] -= phi[i];
  
        # Update count of divisors
        for j in range(i, n + 1, i):
            divs[j] += 1
              
    # Return the final count
    return (n - phi[n] - divs[n] + 1);
      
# Driver code 
if __name__ == '__main__'
      
    N = 42
      
    print(count(N))
  
# This code is contributed by jana_sayantan
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement 
// the above approach 
using System;
  
class GFG{
      
// Function to return the count 
// of integers less than N 
// satisfying given conditions
public static int count(int n) 
      
    // Stores Euler counts 
    int []phi = new int[n + 1];
      
    // Store Divisor counts 
    int []divs = new int[n + 1];
      
    // Based on Sieve of Eratosthenes 
    for(int i = 1; i <= n; i++)
    
        phi[i] += i; 
  
        // Update phi values of all 
        // multiples of i 
        for(int j = i * 2; j <= n; j += i) 
            phi[j] -= phi[i]; 
  
        // Update count of divisors 
        for(int j = i; j <= n; j += i) 
            divs[j]++; 
    
  
    // Return the final count 
    return (n - phi[n] - divs[n] + 1); 
  
// Driver Code 
public static void Main(String []args) 
    int N = 42; 
  
    Console.WriteLine(count(N)); 
}
  
// This code is contributed by 29AjayKumar
chevron_right

Output: 
23

Time Complexity: O(N*log(log(N))) 
Auxiliary Space: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :