# Count of Array elements greater than or equal to twice the Median of K trailing Array elements

Given an array A[] of size greater than integer K, the task is to find the total number of elements from the array which are greater than or equal to twice the median of K trailing elements in the given array.

Examples:

Input: A[] = {10, 20, 30, 40, 50}, K = 3
Output:
Explanation:
Since K = 3, the only two elements to be checked are {40, 50}.
For 40, the median of 3 trailing numbers {10, 20, 30} is 20.
Since 40 = 2 * 20, 40 is counted.
For element 50 the median of 3 trailing numbers {20, 30, 40} is 30.
Since 50 < 2 * 30, so 50 is not counted.
Input: A[] = {1, 2, 2, 4, 5}, K = 3
Output:
Explanation:
Since K = 3, the only two elements considered are {4, 5}.
For 4, the median of 3 trailing numbers {1, 2, 2} is 2.
Since 4 = 2 * 2, therefore, 4 is counted.
For 5 the median of 3 trailing numbers {2, 2, 4} is 2.
5 > 2 * 2, so 5 is counted.

Naive Approach:
Follow the steps below to solve the problem:

• Iterate over the given array from K + 1 to the size of the array and for each element, add the previous K elements from the array.
• Then, find the median and check if the current element is equal to or exceeds twice the value of the median. If found to be true, increase count.
• Finally. print the count

Time Complexity: O(N * K * log K)
Auxiliary Space: O(1)
Efficient Approach:
To optimize the above approach, the idea is to use frequency-counting and sliding window technique. Follow the steps below to solve the problem:

• Store the frequencies of the elements present in the first K indices.
• Iterate over the array from (k + 1)th index to the Nth index and for each iteration, decrease the frequency of the i – kth element where i is the current index of the previous K trailing elements and increase the frequency count of the current element.
• For each iteration obtain the value of the low median and high median which will be different if the K is even. Otherwise it will be the same.
• Initialize a count variable that will count the frequency. Whenever floor((k+1)/2) is reached, the count gives a low median and similarly when the count reaches to ceil((k+1)/2) then it gives high median.
• Then add both the low and high median value and check if the current value is greater than or equal to it or and accordingly update the answer.

Below is the implementation of the above approach:

 `// C++ Program to implement` `// the above approach` `#include ` `using` `namespace` `std;`   `const` `int` `N = 2e5;` `const` `int` `V = 500;`   `// Function to find the count of array` `// elements >= twice the median of K` `// trailing array elements` `void` `solve(``int` `n, ``int` `d, ``int` `input[])` `{` `    ``int` `a[N];`   `    ``// Stores frequencies` `    ``int` `cnt[V + 1];`   `    ``// Stores the array elements` `    ``for` `(``int` `i = 0; i < n; ++i)` `        ``a[i] = input[i];`   `    ``int` `answer = 0;`   `    ``// Count the frequencies of the` `    ``// array elements` `    ``for` `(``int` `i = 0; i < d; ++i)` `        ``cnt[a[i]]++;`   `    ``// Iterating from d to n-1 index` `    ``// means (d+1)th element to nth element` `    ``for` `(``int` `i = d; i <= n - 1; ++i) {`   `        ``// To check the median` `        ``int` `acc = 0;`   `        ``int` `low_median = -1, high_median = -1;`   `        ``// Iterate over the frequencies` `        ``// of the elements` `        ``for` `(``int` `v = 0; v <= V; ++v) {`   `            ``// Add the frequencies` `            ``acc += cnt[v];`   `            ``// Check if the low_median value is` `            ``// obtained or not, if yes then do` `            ``// not change as it will be minimum` `            ``if` `(low_median == -1` `                ``&& acc >= ``int``(``floor``((d + 1) / 2.0)))` `                ``low_median = v;`   `            ``// Check if the high_median value is` `            ``// obtained or not, if yes then do not` `            ``// change it as it will be maximum` `            ``if` `(high_median == -1` `                ``&& acc >= ``int``(``ceil``((d + 1) / 2.0)))` `                ``high_median = v;` `        ``}`   `        ``// Store 2 * median of K trailing elements` `        ``int` `double_median = low_median + high_median;`   `        ``// If the current >= 2 * median` `        ``if` `(a[i] >= double_median)` `            ``answer++;`   `        ``// Decrease the frequency for (k-1)-th element` `        ``cnt[a[i - d]]--;`   `        ``// Increase the frequency of the` `        ``// current element` `        ``cnt[a[i]]++;` `    ``}`   `    ``// Print the count` `    ``cout << answer << endl;` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `input[] = { 1, 2, 2, 4, 5 };` `    ``int` `n = ``sizeof` `input / ``sizeof` `input;` `    ``int` `k = 3;`   `    ``solve(n, k, input);`   `    ``return` `0;` `}`

 `// Java Program to implement` `// the above approach` `class` `GFG{`   `static` `int` `N = (``int``) 2e5;` `static` `int` `V = ``500``;`   `// Function to find the count of array` `// elements >= twice the median of K` `// trailing array elements` `static` `void` `solve(``int` `n, ``int` `d, ``int` `input[])` `{` `    ``int` `[]a = ``new` `int``[N];`   `    ``// Stores frequencies` `    ``int` `[]cnt = ``new` `int``[V + ``1``];`   `    ``// Stores the array elements` `    ``for` `(``int` `i = ``0``; i < n; ++i)` `        ``a[i] = input[i];`   `    ``int` `answer = ``0``;`   `    ``// Count the frequencies of the` `    ``// array elements` `    ``for` `(``int` `i = ``0``; i < d; ++i)` `        ``cnt[a[i]]++;`   `    ``// Iterating from d to n-1 index` `    ``// means (d+1)th element to nth element` `    ``for` `(``int` `i = d; i <= n - ``1``; ++i) ` `    ``{`   `        ``// To check the median` `        ``int` `acc = ``0``;`   `        ``int` `low_median = -``1``, high_median = -``1``;`   `        ``// Iterate over the frequencies` `        ``// of the elements` `        ``for` `(``int` `v = ``0``; v <= V; ++v) ` `        ``{`   `            ``// Add the frequencies` `            ``acc += cnt[v];`   `            ``// Check if the low_median value is` `            ``// obtained or not, if yes then do` `            ``// not change as it will be minimum` `            ``if` `(low_median == -``1` `                ``&& acc >= (``int``)(Math.floor((d + ``1``) / ``2.0``)))` `                ``low_median = v;`   `            ``// Check if the high_median value is` `            ``// obtained or not, if yes then do not` `            ``// change it as it will be maximum` `            ``if` `(high_median == -``1` `                ``&& acc >= (``int``)(Math.ceil((d + ``1``) / ``2.0``)))` `                ``high_median = v;` `        ``}`   `        ``// Store 2 * median of K trailing elements` `        ``int` `double_median = low_median + high_median;`   `        ``// If the current >= 2 * median` `        ``if` `(a[i] >= double_median)` `            ``answer++;`   `        ``// Decrease the frequency for (k-1)-th element` `        ``cnt[a[i - d]]--;`   `        ``// Increase the frequency of the` `        ``// current element` `        ``cnt[a[i]]++;` `    ``}`   `    ``// Print the count` `    ``System.out.print(answer +``"\n"``);` `}`   `// Driver Code` `public` `static` `void` `main(String[] args)` `{` `    ``int` `input[] = { ``1``, ``2``, ``2``, ``4``, ``5` `};` `    ``int` `n = input.length;` `    ``int` `k = ``3``;`   `    ``solve(n, k, input);` `}` `}`   `// This code is contributed by sapnasingh4991`

 `# Python3 program to implement` `# the above approach` `import` `math`   `N ``=` `200000` `V ``=` `500`   `# Function to find the count of array` `# elements >= twice the median of K` `# trailing array elements` `def` `solve(n, d, input1):`   `    ``a ``=` `[``0``] ``*` `N`   `    ``# Stores frequencies` `    ``cnt ``=` `[``0``] ``*` `(V ``+` `1``)`   `    ``# Stores the array elements` `    ``for` `i ``in` `range``(n):` `        ``a[i] ``=` `input1[i]`   `    ``answer ``=` `0`   `    ``# Count the frequencies of the` `    ``# array elements` `    ``for` `i ``in` `range``(d):` `        ``cnt[a[i]] ``+``=` `1`   `    ``# Iterating from d to n-1 index` `    ``# means (d+1)th element to nth element` `    ``for` `i ``in` `range``(d, n):`   `        ``# To check the median` `        ``acc ``=` `0`   `        ``low_median ``=` `-``1` `        ``high_median ``=` `-``1`   `        ``# Iterate over the frequencies` `        ``# of the elements` `        ``for` `v ``in` `range``(V ``+` `1``):`   `            ``# Add the frequencies` `            ``acc ``+``=` `cnt[v]`   `            ``# Check if the low_median value is` `            ``# obtained or not, if yes then do` `            ``# not change as it will be minimum` `            ``if` `(low_median ``=``=` `-``1` `and` `                ``acc >``=` `int``(math.floor((d ``+` `1``) ``/` `2.0``))):` `                ``low_median ``=` `v`   `            ``# Check if the high_median value is` `            ``# obtained or not, if yes then do not` `            ``# change it as it will be maximum` `            ``if` `(high_median ``=``=` `-``1` `and` `                ``acc >``=` `int``(math.ceil((d ``+` `1``) ``/` `2.0``))):` `                ``high_median ``=` `v`   `        ``# Store 2 * median of K trailing elements` `        ``double_median ``=` `low_median ``+` `high_median`   `        ``# If the current >= 2 * median` `        ``if` `(a[i] >``=` `double_median):` `            ``answer ``+``=` `1`   `        ``# Decrease the frequency for (k-1)-th element` `        ``cnt[a[i ``-` `d]] ``-``=` `1`   `        ``# Increase the frequency of the` `        ``# current element` `        ``cnt[a[i]] ``+``=` `1`   `    ``# Print the count` `    ``print``(answer)`   `# Driver Code` `if` `__name__ ``=``=` `"__main__"``:` `    `  `    ``input1 ``=` `[ ``1``, ``2``, ``2``, ``4``, ``5` `]` `    ``n ``=` `len``(input1)` `    ``k ``=` `3`   `    ``solve(n, k, input1)`   `# This code is contributed by chitranayal`

 `// C# Program to implement` `// the above approach` `using` `System;` `class` `GFG{`   `static` `int` `N = (``int``) 2e5;` `static` `int` `V = 500;`   `// Function to find the count of array` `// elements >= twice the median of K` `// trailing array elements` `static` `void` `solve(``int` `n, ``int` `d, ``int` `[]input)` `{` `    ``int` `[]a = ``new` `int``[N];`   `    ``// Stores frequencies` `    ``int` `[]cnt = ``new` `int``[V + 1];`   `    ``// Stores the array elements` `    ``for` `(``int` `i = 0; i < n; ++i)` `        ``a[i] = input[i];`   `    ``int` `answer = 0;`   `    ``// Count the frequencies of the` `    ``// array elements` `    ``for` `(``int` `i = 0; i < d; ++i)` `        ``cnt[a[i]]++;`   `    ``// Iterating from d to n-1 index` `    ``// means (d+1)th element to nth element` `    ``for` `(``int` `i = d; i <= n - 1; ++i) ` `    ``{`   `        ``// To check the median` `        ``int` `acc = 0;`   `        ``int` `low_median = -1, high_median = -1;`   `        ``// Iterate over the frequencies` `        ``// of the elements` `        ``for` `(``int` `v = 0; v <= V; ++v) ` `        ``{`   `            ``// Add the frequencies` `            ``acc += cnt[v];`   `            ``// Check if the low_median value is` `            ``// obtained or not, if yes then do` `            ``// not change as it will be minimum` `            ``if` `(low_median == -1 && ` `                ``acc >= (``int``)(Math.Floor((d + 1) / 2.0)))` `                ``low_median = v;`   `            ``// Check if the high_median value is` `            ``// obtained or not, if yes then do not` `            ``// change it as it will be maximum` `            ``if` `(high_median == -1 && ` `                ``acc >= (``int``)(Math.Ceiling((d + 1) / 2.0)))` `                ``high_median = v;` `        ``}`   `        ``// Store 2 * median of K trailing elements` `        ``int` `double_median = low_median + high_median;`   `        ``// If the current >= 2 * median` `        ``if` `(a[i] >= double_median)` `            ``answer++;`   `        ``// Decrease the frequency for (k-1)-th element` `        ``cnt[a[i - d]]--;`   `        ``// Increase the frequency of the` `        ``// current element` `        ``cnt[a[i]]++;` `    ``}`   `    ``// Print the count` `    ``Console.Write(answer + ``"\n"``);` `}`   `// Driver Code` `public` `static` `void` `Main(String[] args)` `{` `    ``int` `[]input = { 1, 2, 2, 4, 5 };` `    ``int` `n = input.Length;` `    ``int` `k = 3;`   `    ``solve(n, k, input);` `}` `}`   `// This code is contributed by sapnasingh4991`

Output:
```2

```

Time Complexity: O(N)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.