Open In App

Class 9 RD Sharma Solutions – Chapter 2 Exponents of Real Numbers- Exercise 2.1

Question 1 (i). Simplify 3(a4b3)10 × 5(a2b2)3

Solution:

Given 3(a4b3)10 × 5(a2b2)3



= 3 × a40 × b30 × 5 × a6 × b6

= 3 × a46 × b36 × 5                    [am × an = am+n]



= 15 × a46 × b36                              

= 15a46b36

Thus, 3(a4b3)10 × 5(a2b2)3 = 15a46b36

Question 1 (ii). Simplify (2x-2y3)3

Solution:

Given (2x-2y3)3

= 23 × x-6 × y9

= 8 × x-6 × y9                             [am × an =am+n]

= 8x-6y9

Thus, (2x-2y3)3 = 8x-6y9

Question 1 (iii). Simplify 

Solution:

Given 

=

=                  [am × an = am+n]

=

= 3/102

= 3/100

Thus, 

Question 1 (iv). Simplify 

Solution:

Given 

                     [am × an = am+n]

= -2×a2×b5×a-2×b-2

= -2×a2+(-2)×b5+(-2)                       [am × an = am+n]

= -2×a0×b3

= -2b3                                             [a0=1]

Thus, =-2b3

Question 1 (v). Simplify 

Solution:

Given 

                           [am × an = am+n]

Thus, 

Question 1 (vi). Simplify 

Solution:

Given 

                              [(am)n = amn]

= a18n-54 × a-(2n-4)                                            [am × an = am+n]

= a18n-54-2n+4

= a16n-50

Thus, = a16n-50

Question 2 (i) If a = 3 and b = -2,find the value of aa + bb

Solution:

Given a = 3 and b = -2

On substituting the value of a and b in aa + bb, we get

aa + bb = 33 + (-2)-2

= 27 + 1/4

= (108 + 1)/4

= 109/4

Thus, aa + bb = 109/4

Question 2 (ii). If a = 3 and b = -2,find the value of ab + ba

Solution:

Given a = 3 and b = -2

On substituting the value of a and b in ab + ba, we get

ab + ba = 3-2 + (-2)3

= 1/9 + (-8)

= (1 – 72)/9

= -71/9

Thus, ab + ba = -71/9

Question 2 (iii). If a = 3 and b = -2,find the value of (a + b)ab.

Solution:

Given a = 3 and b = -2

On substituting the value of a and b in (a + b)ab, we get

(a + b)ab = (3 + (-2))3×-2

= (1)-6

= 1

Thus, (a + b)ab = 1

Question 3 (i). Prove that 

Solution:

Let us first solve left-hand side of the given equation

By using the formula (am)n = amn, we get

By using the formula am/an = am-n, we get

By using the formula am × an = am+n , we get

=

= x

= 1

= Right-hand side of the given equation

Thus, we proved that 

Question 3 (ii). Prove that 

Solution:

Let us consider the left-hand side of the given equation

By using the formula, (am)n = amn, we get

                                   [am × an = am+n]

= 1

= Right-hand side of the given equation

Thus, we proved that 

Question 3 (iii). Prove that 

Solution:

Let us first solve left-hand side of the given equation

By using the formula (am)n = amn, we get

By using the formula am/an = am-n, we get

By using the formula am × an = am+n , we get

= Right-hand side of the given equation

Thus, we proved that 

Question 4 (i). Prove that 

Solution:

Let us first consider the left-hand side of given equation

= 1

= Right-hand side of the given equation

Thus, we proved that 

Question 4 (ii). Prove that 

Solution:

Let us first consider the left-hand side of given equation

 

= 1 

= Right-hand side of the given equation

Thus, we proved that 

Question 5 (i). Prove that 

Solution:

Let us first consider the left-hand side of given equation

= abc

= Right hand side of the given equation

Thus, we proved that 

Question 5 (ii). Prove that 

Solution:

Let us first consider the left hand side of given equation

= Right hand side of the given equation

Thus, we proved that 

Question 6. If abc = 1, show that 

Solution:

Given abc = 1

⇒ c = 1/ab

Let us first consider the left-hand side of given equation

By substituting the value of c in above equation, we get

= 1

= Right hand side of the given equation

Thus, we have shown that if abc = 1, 

Question 7 (i). Simplify 

Solution:

Given 

                          [am × an = am+n]

= 33n+2-(3n-3)                                                    [am/an = am-n]

= 35

= 243

Thus, = 243

Question 7 (ii). Simplify 

Solution:

Given 

                         [am × an = am+n]

 

= 4/24

= 1/6

Thus, = 1/6

Question 7 (iii). Simplify 

Solution:

Given, 

=

= (19 × 5)/5

= 19

Thus, 

Question 7 (iv). Simplify 

Solution:

Given 

= (48 + 4)/13

= 52/13 

= 4

Thus, 

Question 8 (i). Solve the equation 72x+3 = 1 for x.

Solution:

Given equation 72x+3 = 1

We know that, for any a∈ Real numbers, a0 = 1

Let a = 7

⇒ 72x+3 = 70

Since the bases are equal, let us equate the exponents

⇒ 2x + 3 = 0

⇒ x = -3/2

Thus, the value of x is -3/2

Question 8 (ii). Solve the equation 2x+1 = 4x-3 for x.

Solution:

Given 2x+1 = 4x-3

We can write 4 = 22

⇒ 2x+1 =22(x-3)

⇒ 2x+1 = 22x-6

Since the bases are equal, let us equate the exponents

⇒ x + 1 = 2x – 6

⇒ x = 7

Thus, the value of x is 7

Question 8 (iii). Solve the equation 25x+3 = 8x+3 for x.

Solution:

Given 25x+3 = 8x+3

We know that 8 = 23

⇒ 25x+3 = 23(x+3)

⇒ 25x+3 = 23x+9

Since the bases are equal, let us equate the exponents

⇒ 5x + 3 = 3x + 9

⇒ 5x – 3x = 9 – 3

⇒ 2x = 6

⇒ x = 3

Thus, the value of x is 3

Question 8 (iv). Solve the equation 42x = 1/32 for x.

Solution:

Given 42x = 1/32

⇒ 22(2x) = 1/32

⇒ 22(2x) × 32 = 1

⇒ 24x × 25 = 1

⇒ 24x+5 = 20

Since the bases are equal, let us equate the exponents

⇒ 4x + 5 = 0

⇒ x = -5/4

Thus, the value of x is -5/4

Question 8 (v). Solve the equation 4x – 1 × (0.5)3-2x = (1/8)x for x.

Solution:

Given 4x – 1 × (0.5)3-2x = (1/8)x

⇒ 

⇒ 

⇒ 22(x-1) × 2-(3-2x) = 2-3x

⇒ 22x-2-3+2x = 2-3x

⇒ 24x-5 = 2-3x

Since the bases are equal, let us equate the exponents

⇒ 4x – 5 = -3x

⇒ 7x = 5

⇒ x = 5/7

 Thus, the value of x is 5/7

Question 8 (vi). Solve the equation 23x-7 = 256 for x.

Solution:

Given 23x-7 = 256

⇒ 23x-7 = 28

Since the bases are equal, let us equate the exponents

⇒ 3x – 7 = 8

⇒ x = 15/3 

⇒ x = 5

Thus, the value of x is 5

Question 9 (i). Solve the equation 22x – 2x+3 + 24 = 0 for x.

Solution:

Given 22x – 2x+3 + 24 = 0

⇒ (2x)2 – 2 × 2x × 22 + (22)2 = 0

⇒ (2x – 22)2 = 0

⇒ 2x – 22 = 0

⇒ 2x = 22

Since the bases are equal, let us equate the exponents

⇒ x = 2

Thus, the value of x is 2

Question 9 (ii). Solve the equation 32x+4 + 1 = 2.3x+2 for x.

Solution:

Given 32x+4 + 1 = 2.3x+2

⇒ 

⇒ 

⇒ (3x+2 – 1)2 = 0

⇒ 3x+2 – 1 = 0

⇒ 3x+2 = 30

Since the bases are equal, let us equate the exponents

⇒ x + 2 = 0

⇒ x = -2

Thus, the value of x is -2

Question 10. If 49392 = a4b2c3, find the values of a, b, and c where a, b and c are different positive primes.

Solution:

 Let us first find out prime factorization of 49392

Thus, 49392 = 24 × 32 × 73

Where 2, 3 and 7 are positive primes

49392 = 243273 = a4b2c3

Thus, on comparing, we get

a = 2,b = 3 and c = 7

Thus, the values of a, b and c are 2, 3, 7 respectively.

Question 11. If 1176 = 2a3b7c, find a, b and c.

Solution:

Given 1176 = 2a3b7c

 Let us first find out prime factorization of 1176

Thus, 1176 = 23 × 31 × 72

1176 = 233172 = 2a3b7c

Thus, on comparing, we get

a = 3, b = 1, c = 2

Thus, the values of a, b and c are 3, 1, 2 respectively.

Question 12. Given 4725 = 3a5b7c, find

(i) the integral values of a, b and c

(ii) the value of 2-a3b7c

Solution:

Given 4725 = 3a5b7c

(i) Let us first find out prime factorization of 4725

Thus, 4725 = 33 × 52 × 71

4725 = 335271 = 3a5b7c

Thus, on comparing, we get

a = 3,b = 2,c = 1

Thus, the values of a, b and c are 3,2,1 respectively.

(ii) Here a = 3, b = 2, c = 1

On substituting these values in 2-a3b7c

2-a3b7c= 2-3×32×71

= 1/8 × 9 × 7 = 63/8

Thus, the value of 2-a3b7c is 63/8

Question 13. If a = xyp-1, b = xyq-1, c = xyr-1, prove that aq-rbr-pcp-q = 1.

Solution:

Given a = xyp-1, b = xyq-1, c = xyr-1

aq-rbr-pcp-q=

= xq-r+r-p+p-q y(p-1)(q-r)+(r-p)(q-1)+(p-q)(r-1)

= xq-r+r-p+p-q ypq-q-pr+r+rq-r-pq+p+pr-p-qr+q

= x0y0

= 1

Thus, we proved that aq-rbr-pcp-q = 1


Article Tags :