# Check whether given number N is a Moran Number or not

Given an integer N, check whether the given number is a Moran Number or not. Moran numbers are a subset of Harshad numbers.

A number N is a Moran number if N divided by the sum of its digits gives a prime number. For example some Moran numbers are 18, 21, 27, 42, 45 and so on.

Examples:

Input: N = 34
Output: No
Explanation:
34 is not a moran number because it is not completely divisible 7 (sum of its digits).

Input: N = 21
Output: Yes
Explanation:
21 is a moran number because 21 divided by the sum of its digits gives a prime number.

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: To solve the problem mentioned above we have to find the sum of digits of that number. Then find the quotient by dividing the number by the sum of its digits and check if the quotient is a prime then the given number is a Moran Number.

Below is the implementation of the above approach:

 // C++ implementation to check if // the number is Moran number    #include using namespace std;    // Function to calculate digit sum int digSum(int a) {     int sum = 0;     while (a) {         sum += a % 10;         a = a / 10;     }     return sum; }    // Function to check if number is prime bool isPrime(int r) {     bool s = true;        for (int i = 2; i * i <= r; i++) {         if (r % i == 0) {             s = false;             break;         }     }     return s; }    // Function to check if // number is moran number void moranNo(int n) {     int dup = n;        // Calculate digit sum     int sum = digSum(dup);        // Check if n is completely     // divisible by digit sum     if (n % sum == 0) {            // Calculate the quotient         int c = n / sum;            // Check if the number is prime         if (isPrime(c)) {             cout << "Yes";             return;         }     }        cout << "No" << endl; }    // Driver code int main() {     int n = 21;        moranNo(n);        return 0; }

 // Java implementation to check if // the number is Moran number import java.util.*; import java.lang.*; class GFG{    // Function to calculate digit sum static int digSum(int a) {     int sum = 0;     while (a != 0)      {         sum += a % 10;         a = a / 10;     }     return sum; }    // Function to check if number is prime static boolean isPrime(int r) {     boolean s = true;        for (int i = 2; i * i <= r; i++)      {         if (r % i == 0)          {             s = false;             break;         }     }     return s; }    // Function to check if // number is moran number static void moranNo(int n) {     int dup = n;        // Calculate digit sum     int sum = digSum(dup);        // Check if n is completely     // divisible by digit sum     if (n % sum == 0)      {            // Calculate the quotient         int c = n / sum;            // Check if the number is prime         if (isPrime(c))         {             System.out.println("Yes");             return;         }     }     System.out.println("No"); }    // Driver code public static void main(String[] args) {     int n = 21;        moranNo(n); } }    // This code is contributed by offbeat

 # Python3 implementation to check if  # the number is Moran number     # Function to calculate digit sum  def digSum(a):         _sum = 0        while (a):          _sum += a % 10         a = a // 10        return _sum     # Function to check if number is prime  def isPrime(r):         s = True     i = 2            while i * i <= r:         if (r % i == 0):              s = False             break         i += 1            return s     # Function to check if  # number is moran number  def moranNo(n):         dup = n         # Calculate digit sum      _sum = digSum(dup)         # Check if n is completely      # divisible by digit sum      if (n % _sum == 0):             # Calculate the quotient          c = n // _sum             # Check if the number is prime          if (isPrime(c)):              print("Yes")              return        print("No")     # Driver code  n = 21    moranNo(n)     # This code is contributed by divyamohan123

 // C# implementation to check if // the number is Moran number using System;    class GFG{    // Function to calculate digit sum static int digSum(int a) {     int sum = 0;     while (a != 0)      {         sum += a % 10;         a = a / 10;     }     return sum; }    // Function to check if number is prime static bool isPrime(int r) {     bool s = true;        for(int i = 2; i * i <= r; i++)      {        if (r % i == 0)         {            s = false;            break;        }     }     return s; }    // Function to check if // number is moran number static void moranNo(int n) {     int dup = n;        // Calculate digit sum     int sum = digSum(dup);        // Check if n is completely     // divisible by digit sum     if (n % sum == 0)      {            // Calculate the quotient         int c = n / sum;            // Check if the number is prime         if (isPrime(c))         {             Console.Write("Yes");             return;         }     }     Console.Write("No"); }    // Driver code public static void Main() {     int n = 21;        moranNo(n); } }    // This code is contributed by Code_Mech

Output:
Yes

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Article Tags :
Practice Tags :