Given a square matrix of size N x N, the task is to check if it is Latin square or not.
A square matrix is a Latin Square if each cell of the matrix contains one of N different values (in the range [1, N]), and no value is repeated within a row or a column.
Examples:
Input: 1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1 Output: YES Input: 2 2 2 2 2 3 2 3 2 2 2 3 2 2 2 2 Output: NO
Naive Approach:
- For every element, we first check whether the given element is already present in the given row and given column by iterating over all the elements of the given row and given column.
- If not, then check whether the value is less than or equal to N, if yes, move for the next element.
- If any of the above points are false, then the matrix is not a Latin square.
Efficient Approach: Here is the more efficient approach using a Set data structure in C++:
- Define sets for each row and each column and create two arrays of sets, one for all the rows and the other for columns.
- Iterate over all the elements and insert the value of the given element in the corresponding row set and in the corresponding column set.
- Also, check whether the given value is less than N or not. If not, Print “NO” and return.
- Now, Iterate over all row sets and column sets and check if the size of the set is less than N or not.
- If Yes, Print “YES”. Otherwise, Print “NO”.
Below is the implementation of the above approach.
// C++ program to check if given matrix // is natural latin square or not #include <bits/stdc++.h> using namespace std;
void CheckLatinSquare( int mat[4][4])
{ // Size of square matrix is NxN
int N = sizeof (mat[0]) / sizeof (mat[0][0]);
// Vector of N sets corresponding
// to each row.
vector<set< int > > rows(N);
// Vector of N sets corresponding
// to each column.
vector<set< int > > cols(N);
// Number of invalid elements
int invalid = 0;
for ( int i = 0; i < N; i++) {
for ( int j = 0; j < N; j++) {
rows[i].insert(mat[i][j]);
cols[j].insert(mat[i][j]);
if (mat[i][j] > N || mat[i][j] <= 0) {
invalid++;
}
}
}
// Number of rows with
// repeatative elements.
int numrows = 0;
// Number of columns with
// repeatative elements.
int numcols = 0;
// Checking size of every row
// and column
for ( int i = 0; i < N; i++) {
if (rows[i].size() != N) {
numrows++;
}
if (cols[i].size() != N) {
numcols++;
}
}
if (numcols == 0 && numrows == 0
&& invalid == 0)
cout << "YES" << endl;
else
cout << "NO" << endl;
return ;
} // Driver code int main()
{ int Matrix[4][4] = { { 1, 2, 3, 4 },
{ 2, 1, 4, 3 },
{ 3, 4, 1, 2 },
{ 4, 3, 2, 1 } };
// Funtion call
CheckLatinSquare(Matrix);
return 0;
} |
// Java program to check if given matrix // is natural latin square or not import java.util.*;
class GFG{
@SuppressWarnings ( "unchecked" )
static void CheckLatinSquare( int mat[][])
{ // Size of square matrix is NxN
int N = mat.length;
// Vector of N sets corresponding
// to each row.
HashSet<Integer>[] rows = new HashSet[N];
// Vector of N sets corresponding
// to each column.
HashSet<Integer>[] cols = new HashSet[N];
for ( int i = 0 ; i < N; i++)
{
rows[i] = new HashSet<Integer>();
cols[i] = new HashSet<Integer>();
}
// Number of invalid elements
int invalid = 0 ;
for ( int i = 0 ; i < N; i++)
{
for ( int j = 0 ; j < N; j++)
{
rows[i].add(mat[i][j]);
cols[j].add(mat[i][j]);
if (mat[i][j] > N || mat[i][j] <= 0 )
{
invalid++;
}
}
}
// Number of rows with
// repeatative elements.
int numrows = 0 ;
// Number of columns with
// repeatative elements.
int numcols = 0 ;
// Checking size of every row
// and column
for ( int i = 0 ; i < N; i++)
{
if (rows[i].size() != N)
{
numrows++;
}
if (cols[i].size() != N)
{
numcols++;
}
}
if (numcols == 0 &&
numrows == 0 && invalid == 0 )
System.out.print( "YES" + "\n" );
else
System.out.print( "NO" + "\n" );
return ;
} // Driver code public static void main(String[] args)
{ int Matrix[][] = { { 1 , 2 , 3 , 4 },
{ 2 , 1 , 4 , 3 },
{ 3 , 4 , 1 , 2 },
{ 4 , 3 , 2 , 1 } };
// Funtion call
CheckLatinSquare(Matrix);
} } // This code is contributed by 29AjayKumar |
// C# program to check if given matrix // is natural latin square or not using System;
using System.Collections.Generic;
class GFG{
static void CheckLatinSquare( int [, ] mat)
{
// Size of square matrix is NxN
int N = mat.GetLength(0);
// List of N sets corresponding
// to each row.
HashSet< int >[] rows = new HashSet< int >[ N ];
// List of N sets corresponding
// to each column.
HashSet< int >[] cols = new HashSet< int >[ N ];
for ( int i = 0; i < N; i++)
{
rows[i] = new HashSet< int >();
cols[i] = new HashSet< int >();
}
// Number of invalid elements
int invalid = 0;
for ( int i = 0; i < N; i++)
{
for ( int j = 0; j < N; j++)
{
rows[i].Add(mat[i, j]);
cols[j].Add(mat[i, j]);
if (mat[i, j] > N || mat[i, j] <= 0)
{
invalid++;
}
}
}
// Number of rows with
// repeatative elements.
int numrows = 0;
// Number of columns with
// repeatative elements.
int numcols = 0;
// Checking size of every row
// and column
for ( int i = 0; i < N; i++)
{
if (rows[i].Count != N)
{
numrows++;
}
if (cols[i].Count != N)
{
numcols++;
}
}
if (numcols == 0 && numrows == 0 && invalid == 0)
Console.Write( "YES" + "\n" );
else
Console.Write( "NO" + "\n" );
return ;
}
// Driver code
public static void Main(String[] args)
{
int [, ] Matrix = {{1, 2, 3, 4},
{2, 1, 4, 3},
{3, 4, 1, 2},
{4, 3, 2, 1}};
// Funtion call
CheckLatinSquare(Matrix);
}
} // This code is contributed by Amit Katiyar |
YES
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.