Rearrange array elements such that Bitwise AND of first N – 1 elements is equal to last element

Given an array arr[] of N positive integers, the task is to find an arrangement such that Bitwise AND of the first N – 1 elements is equal to the last element. If no such arrangement is possible then output will be -1.

Examples:

Input: arr[] = {1, 5, 3, 3}
Output: 3 5 3 1
(3 & 5 & 3) = 1 which is equal to the last element.

Input: arr[] = {2, 3, 7}
Output: -1
No such arrangement is possible.

Approach:



Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Utility function to print
// the elements of an array
void printArr(int arr[], int n)
{
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
}
  
// Function to find the required arrangement
void findArrangement(int arr[], int n)
{
  
    // There has to be atleast 2 elements
    if (n < 2) {
        cout << "-1";
        return;
    }
  
    // Minimum element from the array
    int minVal = *min_element(arr, arr + n);
  
    // Swap any occurrence of the minimum
    // element with the last element
    for (int i = 0; i < n; i++) {
        if (arr[i] == minVal) {
            swap(arr[i], arr[n - 1]);
            break;
        }
    }
  
    // Find the bitwise AND of the
    // first (n - 1) elements
    int andVal = arr[0];
    for (int i = 1; i < n - 1; i++) {
        andVal &= arr[i];
    }
  
    // If the bitwise AND is equal
    // to the last element then
    // print the arrangement
    if (andVal == arr[n - 1])
        printArr(arr, n);
    else
        cout << "-1";
}
  
// Driver code
int main()
{
    int arr[] = { 1, 5, 3, 3 };
    int n = sizeof(arr) / sizeof(int);
  
    findArrangement(arr, n);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class GFG 
{
  
// Utility function to print
// the elements of an array
static void printArr(int []arr, int n)
{
    for (int i = 0; i < n; i++)
        System.out.print(arr[i] + " ");
}
  
// Function to find the required arrangement
static void findArrangement(int arr[], int n)
{
  
    // There has to be atleast 2 elements
    if (n < 2)
    {
        System.out.print("-1");
        return;
    }
  
    // Minimum element from the array
    int minVal = Arrays.stream(arr).min().getAsInt();
  
    // Swap any occurrence of the minimum
    // element with the last element
    for (int i = 0; i < n; i++) 
    {
        if (arr[i] == minVal) 
        {
            swap(arr, i, n - 1);
            break;
        }
    }
  
    // Find the bitwise AND of the
    // first (n - 1) elements
    int andVal = arr[0];
    for (int i = 1; i < n - 1; i++) 
    {
        andVal &= arr[i];
    }
  
    // If the bitwise AND is equal
    // to the last element then
    // print the arrangement
    if (andVal == arr[n - 1])
        printArr(arr, n);
    else
        System.out.print("-1");
}
  
static int[] swap(int []arr, int i, int j)
{
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
    return arr;
}
  
// Driver code
public static void main(String []args)
{
    int arr[] = { 1, 5, 3, 3 };
    int n = arr.length;
  
    findArrangement(arr, n);
}
}
  
// This code is contributed by 29AjayKumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Utility function to print 
# the elements of an array 
def printArr(arr, n) :
  
    for i in range(n) :
        print(arr[i], end = " "); 
  
# Function to find the required arrangement 
def findArrangement(arr, n) : 
  
    # There has to be atleast 2 elements 
    if (n < 2) :
        print("-1", end = ""); 
        return
  
    # Minimum element from the array 
    minVal = min(arr); 
  
    # Swap any occurrence of the minimum 
    # element with the last element 
    for i in range(n) :
        if (arr[i] == minVal) :
            arr[i], arr[n - 1] = arr[n - 1], arr[i]; 
            break
              
    # Find the bitwise AND of the 
    # first (n - 1) elements 
    andVal = arr[0]; 
    for i in range(1, n - 1) :
        andVal &= arr[i]; 
  
    # If the bitwise AND is equal 
    # to the last element then 
    # print the arrangement 
    if (andVal == arr[n - 1]) :
        printArr(arr, n); 
    else :
        print("-1"); 
  
# Driver code 
if __name__ == "__main__"
  
    arr = [ 1, 5, 3, 3 ]; 
    n = len(arr); 
  
    findArrangement(arr, n); 
  
# This code is contributed by AnkitRai01
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;    
using System.Linq;
  
class GFG
{
   
// Utility function to print
// the elements of an array
static void printArr(int []arr, int n)
{
    for (int i = 0; i < n; i++)
        Console.Write(arr[i] + " ");
}
   
// Function to find the required arrangement
static void findArrangement(int []arr, int n)
{
   
    // There has to be atleast 2 elements
    if (n < 2)
    {
        Console.Write("-1");
        return;
    }
   
    // Minimum element from the array
    int minVal = arr.Min();
   
    // Swap any occurrence of the minimum
    // element with the last element
    for (int i = 0; i < n; i++) 
    {
        if (arr[i] == minVal) 
        {
            swap(arr, i, n - 1);
            break;
        }
    }
   
    // Find the bitwise AND of the
    // first (n - 1) elements
    int andVal = arr[0];
    for (int i = 1; i < n - 1; i++) 
    {
        andVal &= arr[i];
    }
   
    // If the bitwise AND is equal
    // to the last element then
    // print the arrangement
    if (andVal == arr[n - 1])
        printArr(arr, n);
    else
        Console.Write("-1");
}
   
static int[] swap(int []arr, int i, int j)
{
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
    return arr;
}
   
// Driver code
public static void Main(String []args)
{
    int []arr = { 1, 5, 3, 3 };
    int n = arr.Length;
   
    findArrangement(arr, n);
}
}
  
// This code is contributed by PrinciRaj1992
chevron_right

Output:
3 5 3 1

Time Complexity: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :