Queries to count integers in a range [L, R] such that their digit sum is prime and divisible by K

Given Q queries and an integer K where each query consists of a range [L, R] and the task is to find the count of integers in the given range whose digit sum is prime and divisible by K.

Example:

Input: Q = { {1, 11},
      {5, 15},
      {2, 24} } 
K = 2
Output: 
2
1
3
Explanation:
Query 1: 2 and 11 are the only 
numbers in the given range whose 
digit sum is prime and divisible by K.
Query 2: 11 is the only number.
Query 3: 2, 11 and 20.

Input: Q = { {2, 17},
             {3, 24} }
K = 3
Output:
2
3

Approach:

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
const int maxSize = 1e5 + 1;
bool isPrime[maxSize];
int prefix[maxSize];
  
// Function to return the
// digit sum of num
int digitSum(int num)
{
    int s = 0;
    while (num != 0) {
        s = s + num % 10;
        num = num / 10;
    }
    return s;
}
  
// Sieve Function to generate
// all primes opto maxSize
void sieveOfEratosthenes()
{
    for (int i = 2; i < maxSize; i++) {
        isPrime[i] = true;
    }
  
    for (int i = 2; i * i <= maxSize; i++) {
        if (isPrime[i]) {
            for (int j = i * i; j < maxSize; j += i) {
                isPrime[j] = false;
            }
        }
    }
}
  
// Pre-Computation till maxSize
// and for a given K
void precompute(int k)
{
    sieveOfEratosthenes();
    for (int i = 1; i < maxSize; i++) {
        // Getting Digit Sum
        int sum = digitSum(i);
        // Check if the digit sum
        // is prime and divisible by k
        if (isPrime[sum] == true && sum % k == 0) {
            prefix[i]++;
        }
    }
  
    // Taking Prefix Sum
    for (int i = 1; i < maxSize; i++) {
        prefix[i] = prefix[i] + prefix[i - 1];
    }
}
  
// Function to perform the queries
void performQueries(int k, int q,
                    vector<vector<int> >& query)
{
    // Precompute the results
    precompute(k);
  
    vector<int> ans;
    for (int i = 0; i < q; i++) {
        int l = query[i][0], r = query[i][1];
  
        // Getting count of range in range [L, R]
        int cnt = prefix[r] - prefix[l - 1];
        cout << cnt << endl;
    }
}
  
// Driver code
int main()
{
    vector<vector<int> > query = { { 1, 11 },
                                   { 5, 15 },
                                   { 2, 24 } };
    int k = 2, q = query.size();
    performQueries(k, q, query);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG 
{
    static final int maxSize = (int)1e5 + 1
    static boolean isPrime[] = new boolean[maxSize]; 
    static int prefix[] = new int[maxSize]; 
      
    // Function to return the 
    // digit sum of num 
    static int digitSum(int num) 
    
        int s = 0
        while (num != 0)
        
            s = s + num % 10
            num = num / 10
        
        return s; 
    
      
    // Sieve Function to generate 
    // all primes opto maxSize 
    static void sieveOfEratosthenes() 
    
        for (int i = 2; i < maxSize; i++) 
        
            isPrime[i] = true
        
      
        for (int i = 2; i * i <= maxSize; i++)
        
            if (isPrime[i]) 
            
                for (int j = i * i; 
                         j < maxSize; j += i) 
                
                    isPrime[j] = false
                
            
        
    
      
    // Pre-Computation till maxSize 
    // and for a given K 
    static void precompute(int k) 
    
        sieveOfEratosthenes(); 
          
        for (int i = 1; i < maxSize; i++) 
        
              
            // Getting Digit Sum 
            int sum = digitSum(i); 
              
            // Check if the digit sum 
            // is prime and divisible by k 
            if (isPrime[sum] == true && 
                        sum % k == 0)
            
                prefix[i]++; 
            
        
      
        // Taking Prefix Sum 
        for (int i = 1; i < maxSize; i++) 
        
            prefix[i] = prefix[i] + 
                        prefix[i - 1]; 
        
    
      
    // Function to perform the queries 
    static void performQueries(int k, int q,
                               int query[][]) 
    
        // Precompute the results 
        precompute(k); 
          
        for (int i = 0; i < q; i++) 
        
            int l = query[i][0], r = query[i][1]; 
      
            // Getting count of range in range [L, R] 
            int cnt = prefix[r] - prefix[l - 1]; 
              
            System.out.println(cnt); 
        
    
      
    // Driver code 
    public static void main (String[] args)
    
        int query[][] = { { 1, 11 }, 
                          { 5, 15 }, 
                          { 2, 24 } }; 
        int k = 2, q = query.length; 
        performQueries(k, q, query); 
    
}
  
// This Code is contributed by AnkitRai01
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
from math import sqrt
  
maxSize = 10 ** 5 + 1
isPrime = [0] * maxSize; 
prefix = [0] * maxSize; 
  
# Function to return the 
# digit sum of num 
def digitSum(num) :
      
    s = 0
    while (num != 0) :
        s = s + num % 10
        num = num // 10
  
    return s; 
  
# Sieve Function to generate 
# all primes opto maxSize 
def sieveOfEratosthenes() :
  
    for i in range(2, maxSize) :
        isPrime[i] = True
  
    for i in range(2, int(sqrt(maxSize)) + 1) :
        if (isPrime[i]) :
            for j in range(i * i, maxSize, i) : 
                isPrime[j] = False
          
# Pre-Computation till maxSize 
# and for a given K 
def precompute(k) : 
  
    sieveOfEratosthenes(); 
      
    for i in range(1, maxSize) : 
          
        # Getting Digit Sum 
        sum = digitSum(i); 
          
        # Check if the digit sum 
        # is prime and divisible by k 
        if (isPrime[sum] == True and 
                    sum % k == 0) :
            prefix[i] += 1;
  
    # Taking Prefix Sum 
    for i in range(1, maxSize) :
        prefix[i] = prefix[i] + prefix[i - 1]; 
  
# Function to perform the queries 
def performQueries(k, q, query) : 
  
    # Precompute the results 
    precompute(k); 
  
    for i in range(q) :
        l = query[i][0]; r = query[i][1]; 
  
        # Getting count of range in range [L, R] 
        cnt = prefix[r] - prefix[l - 1]; 
        print(cnt); 
          
# Driver code 
if __name__ == "__main__" :
  
    query = [ [ 1, 11 ], 
              [ 5, 15 ], 
              [ 2, 24 ] ]; 
              
    k = 2; q = len(query); 
    performQueries(k, q, query); 
      
# This code is contributed by kanugargng
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach 
using System;
      
class GFG 
{
    static readonly int maxSize = (int)1e5 + 1; 
    static Boolean []isPrime = new Boolean[maxSize]; 
    static int []prefix = new int[maxSize]; 
      
    // Function to return the 
    // digit sum of num 
    static int digitSum(int num) 
    
        int s = 0; 
        while (num != 0)
        
            s = s + num % 10; 
            num = num / 10; 
        
        return s; 
    
      
    // Sieve Function to generate 
    // all primes opto maxSize 
    static void sieveOfEratosthenes() 
    
        for (int i = 2; i < maxSize; i++) 
        
            isPrime[i] = true
        
      
        for (int i = 2; i * i <= maxSize; i++)
        
            if (isPrime[i]) 
            
                for (int j = i * i; 
                         j < maxSize; j += i) 
                
                    isPrime[j] = false
                
            
        
    
      
    // Pre-Computation till maxSize 
    // and for a given K 
    static void precompute(int k) 
    
        sieveOfEratosthenes(); 
          
        for (int i = 1; i < maxSize; i++) 
        
              
            // Getting Digit Sum 
            int sum = digitSum(i); 
              
            // Check if the digit sum 
            // is prime and divisible by k 
            if (isPrime[sum] == true && 
                        sum % k == 0)
            
                prefix[i]++; 
            
        
      
        // Taking Prefix Sum 
        for (int i = 1; i < maxSize; i++) 
        
            prefix[i] = prefix[i] + 
                        prefix[i - 1]; 
        
    
      
    // Function to perform the queries 
    static void performQueries(int k, int q,
                               int [,]query) 
    
        // Precompute the results 
        precompute(k); 
          
        for (int i = 0; i < q; i++) 
        
            int l = query[i, 0], r = query[i, 1]; 
      
            // Getting count of range in range [L, R] 
            int cnt = prefix[r] - prefix[l - 1]; 
              
            Console.WriteLine(cnt); 
        
    
      
    // Driver code 
    public static void Main (String[] args)
    
        int [,]query = {{ 1, 11 }, 
                        { 5, 15 }, 
                        { 2, 24 }}; 
        int k = 2, q = query.GetLength(0); 
        performQueries(k, q, query); 
    
}
  
// This code is contributed by PrinciRaj1992
chevron_right

Output:
2
1
3




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :