# Print all maximal increasing contiguous sub-array in an array

Given an array arr[], the task is to find all the maximal contiguous increasing subarray in a given array.

Examples:

Input:
arr[] = { 80, 50, 60, 70, 40, 50, 80, 70 }
Output:
80
50 60 70
40 50 80
70

Input:
arr[] = { 10, 20, 23, 12, 5, 4, 61, 67, 87, 9 }
Output:
10 20 23
12
5
4 61 67 87
9

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Iterate over the array and compare every element with its next neighboring element such that, if it is less than the next element, print it, else print it individually in the next line.

Below is the implementation of the above approach.

 `// C++ Implementation to print all the ` `// Maximal Increasing Sub-array of array ` `#include ` `using` `namespace` `std; ` ` `  `// Function to print each of maximal ` `// contiguous increasing subarray ` `void` `printmaxSubseq(``int` `arr[], ``int` `n) ` `{ ` `    ``int` `i; ` ` `  `    ``// Loop to iterate through the array and print ` `    ``// the maximal contiguous increasing subarray. ` `    ``for` `(i = 0; i < n; i++) { ` `        ``// Condition to check whether the element at i, is ` `        ``// greater than its next neighbouring element or not. ` `        ``if` `(arr[i] < arr[i + 1]) ` `            ``cout << arr[i] << ``" "``; ` `        ``else` `            ``cout << arr[i] << ``"\n"``; ` `    ``} ` `} ` ` `  `// Driver function ` `int` `main() ` `{ ` `    ``int` `arr[] = { 9, 8, 11, 13, 10, 15, 14, 16, 20, 5 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]); ` `    ``printmaxSubseq(arr, n); ` `    ``return` `0; ` `} `

 `// Java Implementation to print all the ` `// Maximal Increasing Sub-array of array ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` ` `  `// Function to print each of maximal ` `// contiguous increasing subarray ` `static` `void` `printmaxSubseq(``int` `arr[], ``int` `n) ` `{ ` `    ``int` `i; ` ` `  `    ``// Loop to iterate through the array and print ` `    ``// the maximal contiguous increasing subarray. ` `    ``for` `(i = ``0``; i < n ; i++)  ` `    ``{ ` `        ``// Condition to check whether the element at i, is ` `        ``// greater than its next neighbouring element or not. ` `        ``if` `(i + ``1` `< n && arr[i] < arr[i + ``1``]) ` `            ``System.out.print(arr[i] + ``" "``); ` `        ``else` `            ``System.out.print(arr[i] + ``"\n"``); ` `    ``} ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `arr[] = { ``9``, ``8``, ``11``, ``13``, ``10``, ``15``, ``14``, ``16``, ``20``, ``5` `}; ` `    ``int` `n = arr.length; ` `    ``printmaxSubseq(arr, n); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

 `# Python3 Implementation to print all the  ` `# Maximal Increasing Sub-array of array  ` ` `  `# Function to print each of maximal  ` `# contiguous increasing subarray  ` `def` `printmaxSubseq(arr, n) : ` `     `  `    ``# Loop to iterate through the array and print  ` `    ``# the maximal contiguous increasing subarray.  ` `    ``for` `i ``in` `range``(n ``-` `1``) : ` `         `  `        ``# Condition to check whether the element at i, is  ` `        ``# greater than its next neighbouring element or not.  ` `        ``if` `(arr[i] < arr[i ``+` `1``]) : ` `            ``print``(arr[i], end ``=` `" "``);  ` `        ``else` `: ` `            ``print``(arr[i]); ` `             `  `    ``print``(arr[n ``-` `1``]); ` `     `  `# Driver function  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``arr ``=` `[ ``9``, ``8``, ``11``, ``13``, ``10``, ``15``, ``14``, ``16``, ``20``, ``5` `];  ` `    ``n ``=` `len``(arr);  ` `    ``printmaxSubseq(arr, n);  ` ` `  `# This code is contributed by AnkitRai01 `

 `// C# Implementation to print all the  ` `// Maximal Increasing Sub-array of array  ` `using` `System; ` ` `  `class` `GFG  ` `{  ` `     `  `    ``// Function to print each of maximal  ` `    ``// contiguous increasing subarray  ` `    ``static` `void` `printmaxSubseq(``int` `[]arr, ``int` `n)  ` `    ``{  ` `        ``int` `i;  ` `     `  `        ``// Loop to iterate through the array and print  ` `        ``// the maximal contiguous increasing subarray.  ` `        ``for` `(i = 0; i < n ; i++)  ` `        ``{  ` `            ``// Condition to check whether the element at i, is  ` `            ``// greater than its next neighbouring element or not.  ` `            ``if` `(i + 1 < n && arr[i] < arr[i + 1])  ` `                ``Console.Write(arr[i] + ``" "``);  ` `            ``else` `                ``Console.WriteLine(arr[i]);  ` `        ``}  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main()  ` `    ``{  ` `        ``int` `[]arr = { 9, 8, 11, 13, 10, 15, 14, 16, 20, 5 };  ` `        ``int` `n = arr.Length;  ` `        ``printmaxSubseq(arr, n);  ` `    ``}  ` `}  ` ` `  `// This code is contributed by AnkitRai01 `

Output:
```9
8 11 13
10 15
14 16 20
5
```

Time Complexity : O(n)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Practice until my ideals becomes my rivals

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : 29AjayKumar, AnkitRai01

Article Tags :
Practice Tags :