Assume the structure of a Linked List node is as follows.
struct Node
{ int data;
struct Node *next;
}; |
class Node:
def __init__( self , data):
self .data = data
self . next = None
|
public class Node
{ public int data;
public Node next;
}; // This code is contributed by pratham_76 |
Explain the functionality of following C functions.
1. What does the following function do for a given Linked List?
void fun1( struct Node* head)
{ if (head == NULL)
return ;
fun1(head->next); cout << head->data << " " ;
} // This code is contributed by shubhamsingh10 |
void fun1( struct Node* head)
{ if (head == NULL)
return ;
fun1(head->next);
printf ( "%d " , head->data);
} |
static void fun1(Node head)
{ if (head == null )
{
return ;
}
fun1(head.next);
System.out.print(head.data + " " );
} // This code is contributed by shubhamsingh10 |
def fun1(head):
if (head = = None ):
return
fun1(head. next )
print (head.data, end = " " )
# This code is contributed by shubhamsingh10 |
static void fun1(Node head)
{ if (head == null )
{
return ;
}
fun1(head.next);
Console.Write(head.data + " " );
} // This code is contributed by shubhamsingh10 |
fun1() prints the given Linked List in reverse manner. For Linked List 1->2->3->4->5, fun1() prints 5->4->3->2->1.
2. What does the following function do for a given Linked List ?
void fun2( struct Node* head)
{ if (head == NULL)
return ;
cout << head->data << " " ;
if (head->next != NULL )
fun2(head->next->next);
cout << head->data << " " ;
} // This code is contributed by shubhamsingh10 |
void fun2( struct Node* head)
{ if (head == NULL)
return ;
printf ( "%d " , head->data);
if (head->next != NULL )
fun2(head->next->next);
printf ( "%d " , head->data);
} |
static void fun2(Node head)
{ if (head == null )
{
return ;
}
System.out.print(head.data + " " );
if (head.next != null )
{
fun2(head.next.next);
}
System.out.print(head.data + " " );
} // This code is contributed by shubhamsingh10 |
def fun2(head):
if (head = = None ):
return
print (head.data, end = " " )
if (head. next ! = None ):
fun2(head. next . next )
print (head.data, end = " " )
# This code is contributed by divyesh072019
|
static void fun2(Node head)
{ if (head == null )
{
return ;
}
Console.Write(head.data + " " );
if (head.next != null )
{
fun2(head.next.next);
}
Console.Write(head.data + " " );
} // This code is contributed by divyeshrabadiya07 |
fun2() prints alternate nodes of the given Linked List, first from head to end, and then from end to head. If Linked List has even number of nodes, then fun2() skips the last node. For Linked List 1->2->3->4->5, fun2() prints 1 3 5 5 3 1. For Linked List 1->2->3->4->5->6, fun2() prints 1 3 5 5 3 1.
Below is a complete running program to test above functions.
#include <bits/stdc++.h> using namespace std;
/* A linked list node */ class Node
{ public :
int data;
Node *next;
}; /* Prints a linked list in reverse manner */ void fun1(Node* head)
{ if (head == NULL)
return ;
fun1(head->next);
cout << head->data << " " ;
} /* prints alternate nodes of a Linked List, first from head to end, and then from end to head. */ void fun2(Node* start)
{ if (start == NULL)
return ;
cout<<start->data<< " " ;
if (start->next != NULL )
fun2(start->next->next);
cout << start->data << " " ;
} /* UTILITY FUNCTIONS TO TEST fun1() and fun2() */ /* Given a reference (pointer to pointer) to the head of a list and an int, push a new node on the front of the list. */ void push(Node** head_ref, int new_data)
{ /* allocate node */
Node* new_node = new Node();
/* put in the data */
new_node->data = new_data;
/* link the old list off the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
} /* Driver code */ int main()
{ /* Start with the empty list */
Node* head = NULL;
/* Using push() to construct below list
1->2->3->4->5 */
push(&head, 5);
push(&head, 4);
push(&head, 3);
push(&head, 2);
push(&head, 1);
cout<< "Output of fun1() for list 1->2->3->4->5 \n" ;
fun1(head);
cout<< "\nOutput of fun2() for list 1->2->3->4->5 \n" ;
fun2(head);
return 0;
} // This code is contributed by rathbhupendra |
#include<stdio.h> #include<stdlib.h> /* A linked list node */ struct Node
{ int data;
struct Node *next;
}; /* Prints a linked list in reverse manner */ void fun1( struct Node* head)
{ if (head == NULL)
return ;
fun1(head->next);
printf ( "%d " , head->data);
} /* prints alternate nodes of a Linked List, first from head to end, and then from end to head. */
void fun2( struct Node* start)
{ if (start == NULL)
return ;
printf ( "%d " , start->data);
if (start->next != NULL )
fun2(start->next->next);
printf ( "%d " , start->data);
} /* UTILITY FUNCTIONS TO TEST fun1() and fun2() */ /* Given a reference (pointer to pointer) to the head of a list and an int, push a new node on the front
of the list. */
void push( struct Node** head_ref, int new_data)
{ /* allocate node */
struct Node* new_node =
( struct Node*) malloc ( sizeof ( struct Node));
/* put in the data */
new_node->data = new_data;
/* link the old list off the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
} /* Driver program to test above functions */ int main()
{ /* Start with the empty list */
struct Node* head = NULL;
/* Using push() to construct below list
1->2->3->4->5 */
push(&head, 5);
push(&head, 4);
push(&head, 3);
push(&head, 2);
push(&head, 1);
printf ( "Output of fun1() for list 1->2->3->4->5 \n" );
fun1(head);
printf ( "\nOutput of fun2() for list 1->2->3->4->5 \n" );
fun2(head);
getchar ();
return 0;
} |
// Java code implementation for above approach class GFG
{ /* A linked list node */
static class Node
{
int data;
Node next;
};
/* Prints a linked list in reverse manner */
static void fun1(Node head)
{
if (head == null )
{
return ;
}
fun1(head.next);
System.out.print(head.data + " " );
}
/* prints alternate nodes of a Linked List, first
from head to end, and then from end to head. */
static void fun2(Node start)
{
if (start == null )
{
return ;
}
System.out.print(start.data + " " );
if (start.next != null )
{
fun2(start.next.next);
}
System.out.print(start.data + " " );
}
/* UTILITY FUNCTIONS TO TEST fun1() and fun2() */
/* Given a reference (pointer to pointer) to the head
of a list and an int, push a new node on the front
of the list. */
static Node push(Node head_ref, int new_data)
{
/* allocate node */
Node new_node = new Node();
/* put in the data */
new_node.data = new_data;
/* link the old list off the new node */
new_node.next = (head_ref);
/* move the head to point to the new node */
(head_ref) = new_node;
return head_ref;
}
/* Driver code */
public static void main(String[] args)
{
/* Start with the empty list */
Node head = null ;
/* Using push() to conbelow list
1->2->3->4->5 */
head = push(head, 5 );
head = push(head, 4 );
head = push(head, 3 );
head = push(head, 2 );
head = push(head, 1 );
System.out.print( "Output of fun1() for " +
"list 1->2->3->4->5 \n" );
fun1(head);
System.out.print( "\nOutput of fun2() for " +
"list 1->2->3->4->5 \n" );
fun2(head);
}
} // This code is contributed by Rajput-Ji |
''' A linked list node ''' class Node:
def __init__( self , data):
self .data = data
self . next = None
''' Prints a linked list in reverse manner ''' def fun1(head):
if (head = = None ):
return
fun1(head. next )
print (head.data, end = " " )
''' prints alternate nodes of a Linked List, first from head to end, and then from end to head. ''' def fun2(start):
if (start = = None ):
return
print (start.data, end = " " )
if (start. next ! = None ):
fun2(start. next . next )
print (start.data, end = " " )
''' UTILITY FUNCTIONS TO TEST fun1() and fun2() ''' ''' Given a reference (pointer to pointer) to the head of a list and an int, push a new node on the front of the list. ''' def push( head, new_data):
''' put in the data '''
new_node = Node(new_data)
''' link the old list off the new node '''
new_node. next = head
''' move the head to poto the new node '''
head = new_node
return head
''' Driver code ''' ''' Start with the empty list ''' head = None
''' Using push() to construct below list 1.2.3.4.5 '''
head = Node( 5 )
head = push(head, 4 )
head = push(head, 3 )
head = push(head, 2 )
head = push(head, 1 )
print ( "Output of fun1() for list 1->2->3->4->5" )
fun1(head) print ( "\nOutput of fun2() for list 1->2->3->4->5" )
fun2(head) # This code is contributed by SHUBHAMSINGH10 |
// C# code implementation for above approach using System;
class GFG
{ /* A linked list node */
public class Node
{
public int data;
public Node next;
};
/* Prints a linked list in reverse manner */
static void fun1(Node head)
{
if (head == null )
{
return ;
}
fun1(head.next);
Console.Write(head.data + " " );
}
/* prints alternate nodes of a Linked List, first
from head to end, and then from end to head. */
static void fun2(Node start)
{
if (start == null )
{
return ;
}
Console.Write(start.data + " " );
if (start.next != null )
{
fun2(start.next.next);
}
Console.Write(start.data + " " );
}
/* UTILITY FUNCTIONS TO TEST fun1() and fun2() */
/* Given a reference (pointer to pointer) to the head
of a list and an int,.Push a new node on the front
of the list. */
static Node Push(Node head_ref, int new_data)
{
/* allocate node */
Node new_node = new Node();
/* put in the data */
new_node.data = new_data;
/* link the old list off the new node */
new_node.next = (head_ref);
/* move the head to point to the new node */
(head_ref) = new_node;
return head_ref;
}
/* Driver code */
public static void Main(String[] args)
{
/* Start with the empty list */
Node head = null ;
/* Using.Push() to conbelow list
1->2->3->4->5 */
head = Push(head, 5);
head = Push(head, 4);
head = Push(head, 3);
head = Push(head, 2);
head = Push(head, 1);
Console.Write( "Output of fun1() for " +
"list 1->2->3->4->5 \n" );
fun1(head);
Console.Write( "\nOutput of fun2() for " +
"list 1->2->3->4->5 \n" );
fun2(head);
}
} // This code is contributed by Rajput-Ji |
Output:
Output of fun1() for list 1->2->3->4->5 5 4 3 2 1 Output of fun2() for list 1->2->3->4->5 1 3 5 5 3 1
Please write comments if you find any of the answers/explanations incorrect, or you want to share more information about the topics discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.