Numbers less than N which are product of exactly two distinct prime numbers

Given a number . The task is to find all such numbers less than N and are a product of exactly two distinct prime numbers.

For Example, 33 is the product of two distinct primes i.e 11 * 3, whereas numbers like 60 which has three distinct prime factors i.e 2 * 2 * 3 * 5.

Note: These numbers cannot be a perfect square.



Examples:

Input : N = 30
Output : 6, 10, 14, 15, 21, 22, 26

Input : N = 50
Output : 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46

Algorithm:

  1. Traverse till N and check whether each number has exactly two prime factors or not.
  2. Now to avoid the situation like 49 having 7 * 7 product of two prime numbers, check whether the number is a perfect square or not to ensure that it has two distinct prime.
  3. If Step 1 and Step 2 satisfies then add the number in the vector list.
  4. Traverse the vector and print all the elements in it.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find numbers that are product
// of exactly two distinct prime numbers
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to check whether a number
// is a PerfectSquare or not
bool isPerfectSquare(long double x)
{
  
    long double sr = sqrt(x);
  
    return ((sr - floor(sr)) == 0);
}
  
// Function to check if a number is a
// product of exactly two distinct primes
bool isProduct(int num)
{
    int cnt = 0;
  
    for (int i = 2; cnt < 2 && i * i <= num; ++i) {
        while (num % i == 0) {
            num /= i;
            ++cnt;
        }
    }
  
    if (num > 1)
        ++cnt;
  
    return cnt == 2;
}
  
// Function to find numbers that are product
// of exactly two distinct prime numbers.
void findNumbers(int N)
{
    // Vector to store such numbers
    vector<int> vec;
  
    for (int i = 1; i <= N; i++) {
        if (isProduct(i) && !isPerfectSquare(i)) {
  
            // insert in the vector
            vec.push_back(i);
        }
    }
  
    // Print all numers till n from the vector
    for (int i = 0; i < vec.size(); i++) {
        cout << vec[i] << " ";
    }
}
  
// Driver function
int main()
{
    int N = 30;
  
    findNumbers(N);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find numbers that are product
// of exactly two distinct prime numbers
import java.util.*;  
  
class GFG{
// Function to check whether a number
// is a PerfectSquare or not
static boolean isPerfectSquare(double x)
{
  
    double sr = Math.sqrt(x);
  
    return ((sr - Math.floor(sr)) == 0);
}
  
// Function to check if a number is a
// product of exactly two distinct primes
static boolean isProduct(int num)
{
    int cnt = 0;
  
    for (int i = 2; cnt < 2 && i * i <= num; ++i) {
        while (num % i == 0) {
            num /= i;
            ++cnt;
        }
    }
  
    if (num > 1)
        ++cnt;
  
    return cnt == 2;
}
  
// Function to find numbers that are product
// of exactly two distinct prime numbers.
static void findNumbers(int N)
{
    // Vector to store such numbers
    Vector<Integer> vec = new Vector<Integer>();
  
    for (int i = 1; i <= N; i++) {
        if (isProduct(i) && !isPerfectSquare(i)) {
  
            // insert in the vector
            vec.add(i);
        }
    }
  
    // Print all numers till n from the vector
    Iterator<Integer> itr = vec.iterator();  
            while(itr.hasNext()){  
                 System.out.print(itr.next()+" ");  
            }  
}
  
// Driver function
public static void main(String[] args)
{
    int N = 30;
  
    findNumbers(N);
}
}
// This Code is Contributed by mits
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find numbers that are product
# of exactly two distinct prime numbers
  
import math 
# Function to check whether a number
# is a PerfectSquare or not
def isPerfectSquare(x):
   
    sr = math.sqrt(x)
   
    return ((sr - math.floor(sr)) == 0)
  
# Function to check if a number is a
# product of exactly two distinct primes
def isProduct( num):
    cnt = 0
   
    i = 2
    while cnt < 2 and i * i <= num:
        while (num % i == 0) :
            num //= i
            cnt += 1
        i += 1
   
    if (num > 1):
        cnt += 1
   
    return cnt == 2
   
# Function to find numbers that are product
# of exactly two distinct prime numbers.
def findNumbers(N):
    # Vector to store such numbers
    vec = []
   
    for i in range(1,N+1) :
        if (isProduct(i) and not isPerfectSquare(i)) :
   
            # insert in the vector
            vec.append(i)
   
    # Print all numers till n from the vector
    for i in range(len( vec)):
        print(vec[i] ,end= " ")
   
# Driver function
if __name__=="__main__":
      
    N = 30 
    findNumbers(N)
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find numbers that are product 
// of exactly two distinct prime numbers 
using System;
using System.Collections.Generic;
  
class GFG
    // Function to check whether a number 
    // is a PerfectSquare or not 
    static bool isPerfectSquare(double x) 
    
  
        double sr = Math.Sqrt(x); 
  
        return ((sr - Math.Floor(sr)) == 0); 
    
  
    // Function to check if a number is a 
    // product of exactly two distinct primes 
    static bool isProduct(int num) 
    
        int cnt = 0; 
  
        for (int i = 2; cnt < 2 && i * i <= num; ++i) 
        
            while (num % i == 0)
            
                num /= i; 
                ++cnt; 
            
        
  
        if (num > 1) 
            ++cnt; 
  
        return cnt == 2; 
    
  
    // Function to find numbers that are product 
    // of exactly two distinct prime numbers. 
    static void findNumbers(int N) 
    
        // Vector to store such numbers 
        List<int> vec = new List<int>(); 
  
        for (int i = 1; i <= N; i++) 
        
            if (isProduct(i) && !isPerfectSquare(i)) 
            
  
                // insert in the vector 
                vec.Add(i); 
            
        
  
        // Print all numers till n from the vector 
        foreach(var a in vec)
                    Console.Write(a + " "); 
    
  
    // Driver code 
    public static void Main(String[] args) 
    
        int N = 30; 
  
        findNumbers(N); 
    
  
// This code has been contributed by 29AjayKumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find numbers that are product
// of exactly two distinct prime numbers
  
// Function to check whether a number
// is a PerfectSquare or not
function isPerfectSquare($x)
{
    $sr = sqrt($x);
  
    return (($sr - floor($sr)) == 0);
}
  
// Function to check if a number is a
// product of exactly two distinct primes
function isProduct($num)
{
    $cnt = 0;
  
    for ($i = 2; $cnt < 2 && 
         $i * $i <= $num; ++$i
    {
        while ($num % $i == 0)
        {
            $num /= $i;
            ++$cnt;
        }
    }
  
    if ($num > 1)
        ++$cnt;
  
    return $cnt == 2;
}
  
// Function to find numbers that are product
// of exactly two distinct prime numbers.
function findNumbers($N)
{
    // Vector to store such numbers
    $vec = array();
  
    for ($i = 1; $i <= $N; $i++) 
    {
        if (isProduct($i) && 
           !isPerfectSquare($i)) 
        {
  
            // insert in the vector
            array_push($vec, $i);
        }
    }
  
    // Print all numers till n from the vector
    for ($i = 0; $i < sizeof($vec); $i++) 
    {
        echo $vec[$i] . " ";
    }
}
  
// Driver Code
$N = 30;
  
findNumbers($N);
  
// This code is contributed by ita_c
chevron_right

Output:
6 10 14 15 21 22 26

Time Complexity: O(*)




Maths is the language of nature

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :