Open In App

Number of groups of magnets formed from N magnets

Given N magnets are kept in a row one after another, either with a negative pole on the left and a positive pole on the right (01) or a positive pole on the left and a negative pole on the right (10). Considering the fact that if 2 consecutive magnets have different poles facing each other, they form a group and attract each other, find the total number of groups possible.

Examples:  



Input : N = 6, magnets = {10, 10, 10, 01, 10, 10}
Output : 3
Explanation: The groups are formed by the following magnets: {1, 2, 3},  {4}, {5, 6}

Input : N = 5, magnets = {10, 10, 10, 10, 10, 01}
Output : 2



Let us consider every pair of consecutive magnets. There are 2 possible cases:  

So a new group will only be formed in the case when two consecutive magnets have different configurations. To traverse the array of magnets and find the number of consecutive pairs with the different configurations.

Below is the implementation of the above approach:  




// C++ program to find number of groups
// of magnets formed from N magnets
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count number of groups of
// magnets formed from N magnets
int countGroups(int n, string m[])
{
    // Intinially only a single group
    // for the first magnet
    int count = 1;
 
    for (int i = 1; i < n; i++)
 
        // Different configuration increases
        // number of groups by 1
        if (m[i] != m[i - 1])
            count++;
 
    return count;
}
 
// Driver Code
int main()
{
    int n = 6;
 
    string m[n] = { "10", "10", "10", "01", "10", "10" };
 
    cout << countGroups(n, m);
 
    return 0;
}




// Java program to find the maximum number
// of elements that can be added to a set
// such that it is the absolute difference // of magnets formed from N magnets
 
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG{ 
     
// Function to count number of groups of
// magnets formed from N magnets
static int countGroups(int n, String m[])
{
    // Intinially only a single group
    // for the first magnet
    int count = 1;
   
    for (int i = 1; i < n; i++)
   
        // Different configuration increases
        // number of groups by 1
        if (m[i] != m[i - 1])
            count++;
   
    return count;
}
   
// Driver Code
public static void main(String args[])
{
    int n = 6;
   
    String []m = { "10", "10", "10", "01", "10", "10" };
   
    System.out.println( countGroups(n, m));
   
}
}




# Python 3 program to find number
# of groups of magnets formed
# from N magnets
 
# Function to count number of
# groups of magnets formed
# from N magnets
def countGroups(n, m):
 
    # Intinially only a single
    # group for the first magnet
    count = 1
 
    for i in range(1, n):
 
        # Different configuration increases
        # number of groups by 1
        if (m[i] != m[i - 1]):
            count += 1
 
    return count
 
# Driver Code
if __name__ == "__main__":
 
    n = 6
 
    m = [ "10", "10", "10",
          "01", "10", "10" ]
 
    print(countGroups(n, m))
 
# This code is contributed
# by ChitraNayal




// C# program to find number of groups
// of magnets formed from N magnets
using System;
 
class GFG {
 
    // Function to count number of groups of
    // magnets formed from N magnets
    static int countGroups(int n, String []m)
    {
         
        // Intinially only a single group
        // for the first magnet
        int count = 1;
     
        for (int i = 1; i < n; i++)
     
            // Different configuration increases
            // number of groups by 1
            if (m[i] != m[i - 1])
                count++;
     
        return count;
}
 
// Driver Code
public static void Main()
{
    int n = 6;
    String [] m = {"10", "10", "10",
                    "01", "10", "10"};
 
    Console.WriteLine(countGroups(n, m));
}
}
 
// This code is contributed by ANKITRAI1




<script>
// Javascript program to find the maximum number
// of elements that can be added to a set
// such that it is the absolute difference
// of magnets formed from N magnets
     
// Function to count number of groups of
// magnets formed from N magnets
function countGroups(n,m) {
    // Intinially only a single group
    // for the first magnet
    let count = 1;
     
    for (let i = 1; i < n; i++)
     
        // Different configuration increases
        // number of groups by 1
        if (m[i] != m[i - 1])
            count++;
     
    return count;
}
     
    // Driver Code
    let n = 6;
    let m=[ "10", "10", "10", "01", "10", "10"];
    document.write( countGroups(n, m));
     
 
// This code is contributed by rag2127
</script>




<?php
// PHP program to find number of groups
// of magnets formed from N magnets
 
// Function to count number of groups
// of magnets formed from N magnets
function countGroups($n, $m)
{
    // Intinially only a single group
    // for the first magnet
    $count = 1;
 
    for ($i = 1; $i < $n; $i++)
 
        // Different configuration increases
        // number of groups by 1
        if ($m[$i] != $m[$i - 1])
            $count++;
 
    return $count;
}
 
// Driver Code
$n = 6;
 
$m = array( "10", "10", "10",
            "01", "10", "10" );
 
echo(countGroups($n, $m));
 
// This code is contributed
// by Shivi_Aggarwal
?>

Output
3






Complexity Analysis:

Approach:




#include <bits/stdc++.h>
using namespace std;
 
// Function to count number of groups of
// magnets formed from N magnets
int countGroups(int n, int magnets[])
{
    stack<int> s;
    int groups = 1; // Initially, only a single group for the first magnet
     
    for (int i = 0; i < n; i++) {
        if (s.empty() || s.top() == magnets[i]) {
            // If the stack is empty or the top magnet has the same polarity as the current magnet, push it onto the stack
            s.push(magnets[i]);
        } else {
            // Otherwise, pop all the magnets from the stack until a magnet with the same polarity as the current magnet is found
            while (!s.empty() && s.top() != magnets[i]) {
                s.pop();
            }
            s.push(magnets[i]); // Push the current magnet onto the stack
            groups++; // Increment the number of groups
        }
    }
     
    return groups;
}
 
// Driver Code
int main()
{
    int n = 6;
    int magnets[n] = {10, 10, 10, 01, 10, 10};
     
    cout << countGroups(n, magnets);
     
    return 0;
}




import java.util.*;
 
public class Main {
    public static void main(String[] args) {
        int n = 6;
        int[] magnets = {10, 10, 10, 01, 10, 10};
 
        System.out.println(countGroups(n, magnets));
    }
 
    public static int countGroups(int n, int[] magnets) {
        Stack<Integer> stack = new Stack<>();
        int groups = 1; // Initially, only a single group for the first magnet
 
        for (int i = 0; i < n; i++) {
            if (stack.isEmpty() || stack.peek() == magnets[i]) {
                // If the stack is empty or the top magnet has the same polarity as the current magnet, push it onto the stack
                stack.push(magnets[i]);
            } else {
                // Otherwise, pop all the magnets from the stack until a magnet with the same polarity as the current magnet is found
                while (!stack.isEmpty() && stack.peek() != magnets[i]) {
                    stack.pop();
                }
                stack.push(magnets[i]); // Push the current magnet onto the stack
                groups++; // Increment the number of groups
            }
        }
 
        return groups;
    }
}




def count_groups(n, magnets):
    s = []
    groups = 1  # Initially, only a single group for the first magnet
     
    for i in range(n):
        if not s or s[-1] == magnets[i]:
            # If the stack is empty or the top magnet has the same polarity as the current magnet, push it onto the stack
            s.append(magnets[i])
        else:
            # Otherwise, pop all the magnets from the stack until a magnet with the same polarity as the current magnet is found
            while s and s[-1] != magnets[i]:
                s.pop()
            s.append(magnets[i])  # Push the current magnet onto the stack
            groups += 1  # Increment the number of groups
     
    return groups
 
# Driver Code
if __name__ == "__main__":
    n = 6
    magnets = [10, 10, 10, 1, 10, 10]
     
    print(count_groups(n, magnets))
 
 # This code is contributed by shivamgupta0987654321




using System;
using System.Collections.Generic;
 
class GFG {
    // Function to count number of groups of magnets formed
    // from N magnets
    static int CountGroups(int n, int[] magnets)
    {
        Stack<int> s = new Stack<int>();
        int groups = 1; // Initially, only a single group
                        // for the first magnet
 
        for (int i = 0; i < n; i++) {
            if (s.Count == 0 || s.Peek() == magnets[i]) {
                // If the stack is empty or the top magnet
                // has the same polarity as the current
                // magnet, push it onto the stack
                s.Push(magnets[i]);
            }
            else {
                // Otherwise, pop all the magnets from the
                // stack until a magnet with the same
                // polarity as the current magnet is found
                while (s.Count > 0
                       && s.Peek() != magnets[i]) {
                    s.Pop();
                }
                s.Push(magnets[i]); // Push the current
                                    // magnet onto the stack
                groups++; // Increment the number of groups
            }
        }
 
        return groups;
    }
 
    static void Main(string[] args)
    {
        int n = 6;
        int[] magnets = { 10, 10, 10, 01, 10, 10 };
 
        Console.WriteLine(CountGroups(n, magnets));
    }
}
 
// This code is contributed by shivamgupta0987654321




function countGroups(n, magnets) {
    let stack = [];
    let groups = 1;
    for (let i = 0; i < n; i++) {
        if (stack.length === 0 || stack[stack.length - 1] === magnets[i]) {
            // If the stack is empty or the top magnet has the
            // same polarity as the current magnet push it onto the stack
            stack.push(magnets[i]);
        } else {
            // Otherwise, pop all the magnets from the stack until
            // magnet with the same polarity as the current magnet is found
            while (stack.length > 0 && stack[stack.length - 1] !== magnets[i]) {
                stack.pop();
            }
            stack.push(magnets[i]);
            groups++;
        }
    }
    return groups;
}
 
const n = 6;
const magnets = [10, 10, 10, 1, 10, 10];
 
console.log(countGroups(n, magnets));

Output
3






Time Complexity: O(n), where n is the number of magnets in the row, as we are iterating through each magnet only once.
Space Complexity: O(n), as in the worst case scenario (when all magnets have different polarities), we might need to store all n magnets in the stack.


Article Tags :