Move all negative elements to end in order with extra space allowed

Given an unsorted array of both negative and positive integer. The task is place all negative element at the end of array without changing the order of positive element and negative element.

Examples:

Input : arr[] = {1, -1, 3, 2, -7, -5, 11, 6 }
Output : 1  3  2  11  6  -1  -7  -5

Input : arr[] = {-5, 7, -3, -4, 9, 10, -1, 11}
Output : 7  9  10  11  -5  -3  -4  -1

Recommended: Please solve it on “PRACTICE ” first, before moving on to the solution.

We have discussed different approaches to this problem in below post.

Rearrange positive and negative numbers with constant extra space

The problem becomes easier if we are allowed to use extra space. Idea is create an empty array (temp[]). First we store all positive element of given array and then we store all negative element of array in Temp[]. Finally we copy temp[] to original array.

Below is the implementation of above idea:

 // C++ program to Move All -ve Element At End // Without changing order Of Array Element #include using namespace std;    // Moves all -ve element to end of array in // same order. void segregateElements(int arr[], int n) {     // Create an empty array to store result     int temp[n];        // Traversal array and store +ve element in     // temp array     int j = 0; // index of temp     for (int i = 0; i < n ; i++)         if (arr[i] >= 0 )             temp[j++] = arr[i];        // If array contains all positive or all negative.     if (j == n || j == 0)         return;        // Store -ve element in temp array     for (int i = 0 ; i < n ; i++)         if (arr[i] < 0)             temp[j++] = arr[i];        // Copy contents of temp[] to arr[]     memcpy(arr, temp, sizeof(temp)); }    // Driver program int main() {     int arr[] = {1 ,-1 ,-3 , -2, 7, 5, 11, 6 };     int n = sizeof(arr)/sizeof(arr[0]);        segregateElements(arr, n);        for (int i = 0; i < n; i++)        cout << arr[i] << " ";        return 0; }

 // Java program to Move All -ve Element At End // Without changing order Of Array Element import java.util.Arrays;    class GFG {            // Moves all -ve element to end of array in     // same order.     static void segregateElements(int arr[], int n)     {                    // Create an empty array to store result         int temp[] = new int[n];            // Traversal array and store +ve element in         // temp array         int j = 0; // index of temp                    for (int i = 0; i < n; i++)             if (arr[i] >= 0)                 temp[j++] = arr[i];            // If array contains all positive or all          // negative.         if (j == n || j == 0)             return;            // Store -ve element in temp array         for (int i = 0; i < n; i++)             if (arr[i] < 0)                 temp[j++] = arr[i];            // Copy contents of temp[] to arr[]         for (int i = 0; i < n; i++)             arr[i] = temp[i];     }            // Driver code     public static void main(String arg[])     {         int arr[] = { 1, -1, -3, -2, 7, 5, 11, 6 };         int n = arr.length;            segregateElements(arr, n);            for (int i = 0; i < n; i++)             System.out.print(arr[i] + " ");     } }    // This code is contributed by Anant Agarwal.

 # Python program to Move All -ve Element At End # Without changing order Of Array Element     # Moves all -ve element to end of array in # same order. def segregateElements(arr, n):     # Create an empty array to store result     temp = [0 for k in range(n)]         # Traversal array and store +ve element in     # temp array     j = 0 # index of temp     for i in range(n):         if (arr[i] >= 0 ):             temp[j] = arr[i]             j +=1         # If array contains all positive or all negative.     if (j == n or j == 0):         return         # Store -ve element in temp array     for i in range(n):         if (arr[i] < 0):             temp[j] = arr[i]             j +=1         # Copy contents of temp[] to arr[]     for k in range(n):         arr[k] = temp[k]    # Driver program arr = [1 ,-1 ,-3 , -2, 7, 5, 11, 6 ] n = len(arr)    segregateElements(arr, n);     for i in range(n):     print arr[i],    # Contributed by Afzal aka Saan

 // C# program to Move All -ve Element At End // Without changing order Of Array Element using System;    class GFG {        // Moves all -ve element to      // end of array in same order.     static void segregateElements(int[] arr, int n)     {         // Create an empty array to store result         int[] temp = new int[n];            // Traversal array and store +ve element in         // temp array         int j = 0; // index of temp            for (int i = 0; i < n; i++)             if (arr[i] >= 0)                 temp[j++] = arr[i];            // If array contains all positive or all         // negative.         if (j == n || j == 0)             return;            // Store -ve element in temp array         for (int i = 0; i < n; i++)             if (arr[i] < 0)                 temp[j++] = arr[i];            // Copy contents of temp[] to arr[]         for (int i = 0; i < n; i++)             arr[i] = temp[i];     }        // Driver code     public static void Main()     {         int[] arr = { 1, -1, -3, -2, 7, 5, 11, 6 };         int n = arr.Length;         segregateElements(arr, n);            for (int i = 0; i < n; i++)             Console.Write(arr[i] + " ");     } }    // This Code is contributed by vt_m.

 = 0 )             \$temp[\$j++] = \$arr[\$i];        // If array contains all positive      // or all negative.     if (\$j == \$n || \$j == 0)         return;        // Store -ve element in temp array     for (\$i = 0 ; \$i < \$n ; \$i++)         if (\$arr[\$i] < 0)             \$temp[\$j++] = \$arr[\$i];        // Copy contents of temp[] to arr[]     for(\$i = 0; \$i < \$n; \$i++)         \$arr[\$i] = \$temp[\$i]; }    // Driver Code \$arr = array(1 ,-1 ,-3 , -2, 7, 5, 11, 6 ); \$n = sizeof(\$arr);    segregateElements(\$arr, \$n);    for (\$i = 0; \$i < \$n; \$i++) echo \$arr[\$i] ." ";    // This code is contributed  // by ChitraNayal ?>

Output:
1 7 5 11 6 -1 -3 -2

Time Complexity : O(n)
Auxiliary space : O(n)

This article is contributed by Nishant_Singh (Pintu). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.