Minimum distance between the maximum and minimum element of a given Array

Given an array A[] consisting of N elements, the task is to find the minimum distance between the minimum and the maximum element of the array.
Examples:  

Input: arr[] = {3, 2, 1, 2, 1, 4, 5, 8, 6, 7, 8, 2} 
Output:
Explanation: 
The minimum element(= 1) is present at indices {2, 4} 
The maximum element(= 8) is present at indices {7, 10}. 
The minimum distance between an occurrence of 1 and 8 is 7 – 4 = 3
Input: arr[] = {1, 3, 69} 
Output:
Explanation: 
The minimum element(= 1) is present at index 0. 
The maximum element(= 69) is present at index 2. 
Therefore, the minimum distance between them is 2. 
 

Naive Approach: 
The simplest approach to solve this problem is as follows:  

Time Complexity: O(N2
Auxiliary Space: O(1) 
Efficient Approach: 
Follow the steps below to optimize the above approach:  

Below is the implementation of the above approach: 



filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement the
// above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum
// distance between the minimum
// and the maximum element
int minDistance(int a[], int n)
{
    // Stores the minimum and maximum
    // array element
    int maximum = -1, minimum = INT_MAX;
 
    // Stores the most recently traversed
    // indices of the minimum and the
    // maximum element
    int min_index = -1, max_index = -1;
 
    // Stores the minimum distance
    // between the minimum and the
    // maximium
    int min_dist = n + 1;
 
    // Find the maximum and
    // the minimum element
    // from the given array
    for (int i = 0; i < n; i++) {
 
        if (a[i] > maximum)
            maximum = a[i];
 
        if (a[i] < minimum)
            minimum = a[i];
    }
 
    // Find the minimum distance
    for (int i = 0; i < n; i++) {
 
        // Check if current element
        // is equal to minimum
        if (a[i] == minimum)
            min_index = i;
 
        // Check if current element
        // is equal to maximum
        if (a[i] == maximum)
            max_index = i;
 
        // If both the minimum and the
        // maximum element has
        // occurred at least once
        if (min_index != -1
            && max_index != -1)
 
            // Update the minimum distance
            min_dist
                = min(min_dist,
                      abs(min_index
                          - max_index));
    }
 
    // Return the answer
    return min_dist;
}
 
// Driver Code
int main()
{
    int a[] = { 3, 2, 1, 2, 1, 4,
                5, 8, 6, 7, 8, 2 };
    int n = sizeof a / sizeof a[0];
    cout << minDistance(a, n);
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to implement
// the above approach
import java.util.*;
class GFG {
 
    // Function to find the minimum
    // distance between the minimum
    // and the maximum element
    public static int minDistance(int a[], int n)
    {
 
        // Stores the minimum and maximum
        // array element
        int max = -1, min = Integer.MAX_VALUE;
 
        // Stores the most recently traversed
        // indices of the minimum and the
        // maximum element
        int min_index = -1, max_index = -1;
 
        // Stores the minimum distance
        // between the minimum and the
        // maximium
        int min_dist = n + 1;
 
        // Find the maximum and
        // the minimum element
        // from the given array
        for (int i = 0; i < n; i++) {
            if (a[i] > max)
                max = a[i];
            if (a[i] < min)
                min = a[i];
        }
 
        // Find the minimum distance
        for (int i = 0; i < n; i++) {
 
            // Check if current element
            // is equal to minimum
            if (a[i] == min)
                min_index = i;
 
            // Check if current element
            // is equal to maximum
            if (a[i] == max)
                max_index = i;
 
            // If both the minimum and the
            // maximum element has
            // occurred at least once
            if (min_index != -1
                && max_index != -1)
                min_dist
                    = Math.min(min_dist,
                               Math.abs(min_index
                                        - max_index));
        }
        return min_dist;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 12;
        int a[] = { 3, 2, 1, 2, 1, 4,
                    5, 8, 6, 7, 8, 2 };
        System.out.println(minDistance(a, n));
    }
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 Program to implement the
# above approach
import sys
 
# Function to find the minimum
# distance between the minimum
# and the maximum element
def minDistance(a, n):
 
    # Stores the minimum and maximum
    # array element
    maximum = -1
    minimum = sys.maxsize
  
    # Stores the most recently traversed
    # indices of the minimum and the
    # maximum element
    min_index = -1
    max_index = -1
  
    # Stores the minimum distance
    # between the minimum and the
    # maximium
    min_dist = n + 1
  
    # Find the maximum and
    # the minimum element
    # from the given array
    for i in range (n):
        if (a[i] > maximum):
            maximum = a[i]
 
        if (a[i] < minimum):
            minimum = a[i]
  
    # Find the minimum distance
    for i in range (n):
  
        # Check if current element
        # is equal to minimum
        if (a[i] == minimum):
            min_index = i
  
        # Check if current element
        # is equal to maximum
        if (a[i] == maximum):
            max_index = i
  
        # If both the minimum and the
        # maximum element has
        # occurred at least once
        if (min_index != -1 and
            max_index != -1):
  
            # Update the minimum distance
            min_dist = (min(min_dist,
                        abs(min_index -
                            max_index)))
  
    # Return the answer
    return min_dist
  
# Driver Code
if __name__ == "__main__":
 
    a = [3, 2, 1, 2, 1, 4,
         5, 8, 6, 7, 8, 2]
    n = len(a)
    print (minDistance(a, n))
 
# This code is contributed by Chitranayal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
 
class GFG{
     
// Function to find the minimum
// distance between the minimum
// and the maximum element
static int minDistance(int []a, int n)
{
     
    // Stores the minimum and maximum
    // array element
    int max = -1, min = Int32.MaxValue;
 
    // Stores the most recently traversed
    // indices of the minimum and the
    // maximum element
    int min_index = -1, max_index = -1;
 
    // Stores the minimum distance
    // between the minimum and the
    // maximium
    int min_dist = n + 1;
 
    // Find the maximum and
    // the minimum element
    // from the given array
    for(int i = 0; i < n; i++)
    {
        if (a[i] > max)
            max = a[i];
        if (a[i] < min)
            min = a[i];
    }
 
    // Find the minimum distance
    for(int i = 0; i < n; i++)
    {
        // Check if current element
        // is equal to minimum
        if (a[i] == min)
            min_index = i;
 
        // Check if current element
        // is equal to maximum
        if (a[i] == max)
            max_index = i;
 
        // If both the minimum and the
        // maximum element has
        // occurred at least once
        if (min_index != -1 && max_index != -1)
            min_dist = Math.Min(min_dist,
                                Math.Abs(
                                min_index -
                                max_index));
    }
    return min_dist;
}
 
// Driver Code
public static void Main()
{
    int n = 12;
    int []a = { 3, 2, 1, 2, 1, 4,
                5, 8, 6, 7, 8, 2 };
                 
    Console.WriteLine(minDistance(a, n));
}
}
 
// This code is contributed by piyush3010
chevron_right

Output: 
3

 

Time Complexity: O(N) 
Auxiliary Space: O(1) 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : piyush3010, chitranayal

Article Tags :