Minimum count of digits required to obtain given Sum

Given an integer N, the task is to find the minimum number of digits required to generate a number having the sum of digits equal to N.

Examples:

Input: N = 18 
Output:
Explanation: 
The number with smallest number of digits having sum of digits equal to 18 is 99.

Input: N = 28 
Output:
Explanation: 
4-digit numbers like 8884, 6877, etc are the smallest in length having sum of digits equal to 28.

Approach: The problem can be solved by the following observations: 



  1. Increment count by 9. Therefore, now count is equal to the number of 9’s in the shortest number. Reduce N to N % 9
  2. Now, if N exceeds 0, increment count by 1.
  3. Finally, print count as the answer.

Below is the implementation of above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the
// minimum count of digits
void mindigits(int n)
{
    // IF N is divisible by 9
    if (n % 9 == 0) {
  
        // Count of 9's is the answer
        cout << n / 9 << endl;
    }
    else {
  
        // If remainder is non-zero
        cout << (n / 9) + 1 << endl;
    }
}
  
// Driver Code
int main()
{
    int n1 = 24;
    int n2 = 14;
    mindigits(n1);
    mindigits(n2);
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
// required to make the given sum
import java.util.*;
  
class Main {
  
    // Function to print the minimum
    // count of digits
    static void mindigits(int n)
    {
  
        // IF N is divisible by 9
        if (n % 9 == 0) {
  
            // Count of 9's is the answer
            System.out.println(n / 9);
        }
        else {
  
            // If remainder is non-zero
            System.out.println((n / 9) + 1);
        }
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        int n1 = 24;
        int n2 = 18;
        mindigits(n1);
        mindigits(n2);
    }
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
  
# Function to prthe minimum
# count of digits
def mindigits(n):
      
    # IF N is divisible by 9
    if (n % 9 == 0):
  
        # Count of 9's is the answer
        print(n // 9);
    else:
  
        # If remainder is non-zero
        print((n // 9) + 1);
  
# Driver Code
if __name__ == '__main__':
      
    n1 = 24;
    n2 = 18;
      
    mindigits(n1);
    mindigits(n2);
  
# This code is contributed by amal kumar choubey
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
  
class GFG{
  
// Function to print the minimum
// count of digits
static void mindigits(int n)
{
      
    // IF N is divisible by 9
    if (n % 9 == 0)
    {
          
        // Count of 9's is the answer
        Console.WriteLine(n / 9);
    }
    else 
    {
          
        // If remainder is non-zero
        Console.WriteLine((n / 9) + 1);
    }
}
  
// Driver Code
public static void Main(String[] args)
{
    int n1 = 24;
    int n2 = 18;
      
    mindigits(n1);
    mindigits(n2);
}
}
  
// This code is contributed by 29AjayKumar
chevron_right

Output: 
3
2

Time Complexity: O(1)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :