# Longest Prime Subarray after removing one element

Given an array A of integers. We can remove at most one index from the array. Our goal is to maximize the length of the subarray that contains all primes. Print the largest length subarray that you can achieve by removing exactly one element from the array .

Examples:

```Input : arr[] = { 2, 8, 5, 7, 9, 5, 7 }
Output : 4
Explanation :If we remove the number 9 which is at index 5 then the remaining array contains a subarray whose length is 4 which is maximum.

Input : arr[] = { 2, 3, 5, 7 }
Output : 3
If we remove the number 3 which is at index 1 then the remaining array contains a subarray whose length is 3 which is maximum.```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The idea is to count contiguous primes just before every index and just after every index. Now traverse the array again and find an index for which sum counts of primes after and before is maximum.

 `// CPP program to find length of the longest ` `// subarray with all primes except possibily ` `// one. ` `#include ` `using` `namespace` `std; ` `#define N 100000 ` ` `  `bool` `prime[N]; ` ` `  `void` `SieveOfEratosthenes() ` `{ ` `    ``// Create a boolean array "prime[0..n]" and  ` `    ``// initialize all entries it as true. A value ` `    ``// in prime[i] will finally be false if i is  ` `    ``// Not a prime, else true. ` `    ``memset``(prime, ``true``, ``sizeof``(prime)); ` ` `  `    ``for` `(``int` `p = 2; p * p <= N; p++) { ` ` `  `        ``// If prime[p] is not changed,  ` `        ``// then it is a prime ` `        ``if` `(prime[p] == ``true``) { ` `            `  `            ``// Update all multiples of p ` `            ``for` `(``int` `i = p * 2; i <= N; i += p) ` `                ``prime[i] = ``false``; ` `        ``} ` `    ``} ` `} ` ` `  ` `  `int` `longestPrimeSubarray(``int` `arr[], ``int` `n) ` `{ ` `    ``int` `left[n], right[n]; ` `    ``int` `primecount = 0, res = 0; ` ` `  `    ``// left array used to count number of  ` `    ``// continuous prime numbers starting  ` `    ``// from left of current element ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``left[i] = primecount; ` `        ``if` `(prime[arr[i]]) { ` `            ``primecount++; ` `        ``} ` `        ``else` `            ``primecount = 0; ` `    ``} ` ` `  `    ``// right array used to count number of  ` `    ``// continuous prime numbers starting from  ` `    ``// right of current element ` `    ``primecount = 0; ` `    ``for` `(``int` `i = n - 1; i >= 0; i--) { ` `        ``right[i] = primecount; ` `        ``if` `(prime[arr[i]]) { ` `            ``primecount++; ` `        ``} ` `        ``else` `            ``primecount = 0; ` `    ``} ` ` `  `    ``for` `(``int` `i = 0; i < n; i++)  ` `        ``res = max(res, left[i] + right[i]); ` `     `  `    ``return` `res; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 2, 8, 5, 7, 9, 5, 7 }; ` ` `  `    ``// used of SieveOfEratosthenes method to  ` `    ``// detect a number prime or not ` `    ``SieveOfEratosthenes(); ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` ` `  `    ``cout << ``"largest length of PrimeSubarray "`  `         ``<< longestPrimeSubarray(arr, n) << endl; ` ` `  `    ``return` `0; ` `} `

 `// Java program to find length of the longest ` `// subarray with all primes except possibily ` `// one. ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` `     `  `static` `int` `N = ``100000``; ` ` `  `static` `boolean` `prime[] = ``new` `boolean``[N]; ` ` `  `static` `void` `SieveOfEratosthenes() ` `{ ` `    ``// Create a boolean array "prime[0..n]" and  ` `    ``// initialize all entries it as true. A value ` `    ``// in prime[i] will finally be false if i is  ` `    ``// Not a prime, else true. ` `    ``Arrays.fill(prime,``true``); ` ` `  `    ``for` `(``int` `p = ``2``; p * p <= N; p++)  ` `    ``{ ` ` `  `        ``// If prime[p] is not changed,  ` `        ``// then it is a prime ` `        ``if` `(prime[p] == ``true``) ` `        ``{ ` `             `  `            ``// Update all multiples of p ` `            ``for` `(``int` `i = p * ``2``; i < N; i += p) ` `                ``prime[i] = ``false``; ` `        ``} ` `    ``} ` `} ` ` `  ` `  `static` `int` `longestPrimeSubarray(``int` `arr[], ``int` `n) ` `{ ` `    ``int` `[]left = ``new` `int``[n];``int``[] right = ``new` `int``[n]; ` `    ``int` `primecount = ``0``, res = ``0``; ` ` `  `    ``// left array used to count number of  ` `    ``// continuous prime numbers starting  ` `    ``// from left of current element ` `    ``for` `(``int` `i = ``0``; i < n; i++) ` `    ``{ ` `        ``left[i] = primecount; ` `        ``if` `(prime[arr[i]]) ` `        ``{ ` `            ``primecount++; ` `        ``} ` `        ``else` `            ``primecount = ``0``; ` `    ``} ` ` `  `    ``// right array used to count number of  ` `    ``// continuous prime numbers starting from  ` `    ``// right of current element ` `    ``primecount = ``0``; ` `    ``for` `(``int` `i = n - ``1``; i >= ``0``; i--)  ` `    ``{ ` `        ``right[i] = primecount; ` `        ``if` `(prime[arr[i]]) ` `        ``{ ` `            ``primecount++; ` `        ``} ` `        ``else` `            ``primecount = ``0``; ` `    ``} ` ` `  `    ``for` `(``int` `i = ``0``; i < n; i++)  ` `        ``res = Math.max(res, left[i] + right[i]); ` `     `  `    ``return` `res; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args)  ` `{ ` `    ``int` `arr[] = { ``2``, ``8``, ``5``, ``7``, ``9``, ``5``, ``7` `}; ` ` `  `    ``// used of SieveOfEratosthenes method to  ` `    ``// detect a number prime or not ` `    ``SieveOfEratosthenes(); ` `    ``int` `n = arr.length; ` ` `  `    ``System.out.println(``"largest length of PrimeSubarray "` `        ``+ longestPrimeSubarray(arr, n)); ` `} ` `} ` ` `  `// This code contributed by Rajput-Ji `

 `# Python 3 program to find length of the  ` `# longest subarray with all primes except  ` `# possibily one. ` `from` `math ``import` `sqrt ` `N ``=` `100000` ` `  `prime ``=` `[``True` `for` `i ``in` `range``(N ``+` `1``)] ` ` `  `def` `SieveOfEratosthenes(): ` `     `  `    ``# Create a boolean array "prime[0..n]"  ` `    ``# and initialize all entries it as true.  ` `    ``# A value in prime[i] will finally be  ` `    ``# false if i is Not a prime, else true. ` `    ``k ``=` `int``(sqrt(N)) ``+` `1` `    ``for` `p ``in` `range``(``2``, k, ``1``): ` `         `  `        ``# If prime[p] is not changed,  ` `        ``# then it is a prime ` `        ``if` `(prime[p] ``=``=` `True``): ` `             `  `            ``# Update all multiples of p ` `            ``for` `i ``in` `range``(p ``*` `2``, N ``+` `1``, p): ` `                ``prime[i] ``=` `False` `                 `  `def` `longestPrimeSubarray(arr, n): ` `    ``left ``=` `[``0` `for` `i ``in` `range``(n)] ` `    ``right ``=` `[``0` `for` `i ``in` `range``(n)] ` `    ``primecount ``=` `0` `    ``res ``=` `0` ` `  `    ``# left array used to count number of  ` `    ``# continuous prime numbers starting  ` `    ``# from left of current element ` `    ``for` `i ``in` `range``(n): ` `        ``left[i] ``=` `primecount ` `        ``if` `(prime[arr[i]]): ` `            ``primecount ``+``=` `1` `         `  `        ``else``: ` `            ``primecount ``=` `0` `         `  `    ``# right array used to count number of  ` `    ``# continuous prime numbers starting  ` `    ``# from right of current element ` `    ``primecount ``=` `0` `    ``i ``=` `n ``-` `1` `    ``while``(i >``=` `0``): ` `        ``right[i] ``=` `primecount ` `        ``if` `(prime[arr[i]]): ` `            ``primecount ``+``=` `1` `     `  `        ``else``: ` `            ``primecount ``=` `0` `             `  `        ``i ``-``=` `1` ` `  `    ``for` `i ``in` `range``(n): ` `        ``res ``=` `max``(res, left[i] ``+` `right[i]) ` `     `  `    ``return` `res ` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``arr ``=` `[``2``, ``8``, ``5``, ``7``, ``9``, ``5``, ``7``] ` ` `  `    ``# used of SieveOfEratosthenes method  ` `    ``# to detect a number prime or not ` `    ``SieveOfEratosthenes() ` `    ``n ``=` `len``(arr) ` `    ``print``(``"largest length of PrimeSubarray"``,  ` `               ``longestPrimeSubarray(arr, n)) ` `     `  `# This code is contributed by ` `# Surendra_Gangwar `

 `// C# program to find length of the longest ` `// subarray with all primes except possibily ` `// one. ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `    ``static` `int` `N = 100000; ` `     `  `    ``static` `bool` `[]prime = ``new` `bool``[N]; ` `     `  `    ``static` `void` `SieveOfEratosthenes() ` `    ``{ ` `        ``// Create a boolean array "prime[0..n]" and  ` `        ``// initialize all entries it as true. A value ` `        ``// in prime[i] will finally be false if i is  ` `        ``// Not a prime, else true. ` `        ``for``(``int` `i =0;i= 0; i--)  ` `        ``{ ` `            ``right[i] = primecount; ` `            ``if` `(prime[arr[i]]) ` `            ``{ ` `                ``primecount++; ` `            ``} ` `            ``else` `                ``primecount = 0; ` `        ``} ` `     `  `        ``for` `(``int` `i = 0; i < n; i++)  ` `            ``res = Math.Max(res, left[i] + right[i]); ` `         `  `        ``return` `res; ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `Main(String[] args)  ` `    ``{ ` `        ``int` `[]arr = { 2, 8, 5, 7, 9, 5, 7 }; ` `     `  `        ``// used of SieveOfEratosthenes method to  ` `        ``// detect a number prime or not ` `        ``SieveOfEratosthenes(); ` `        ``int` `n = arr.Length; ` `     `  `        ``Console.WriteLine(``"largest length of PrimeSubarray "` `            ``+ longestPrimeSubarray(arr, n)); ` `    ``} ` `} ` ` `  `// This code has been contributed by 29AjayKumar `

 `= 0; ``\$i``--)  ` `    ``{ ` `        ``\$right``[``\$i``] = ``\$primecount``; ` `        ``if` `(``\$prime``[``\$arr``[``\$i``]]) ` `        ``{ ` `            ``\$primecount``++; ` `        ``} ` `        ``else` `            ``\$primecount` `= 0; ` `    ``} ` ` `  `    ``for` `(``\$i` `= 0; ``\$i` `< ``\$n``; ``\$i``++)  ` `        ``\$res` `= max(``\$res``, ``\$left``[``\$i``] +     ` `                         ``\$right``[``\$i``]); ` `     `  `    ``return` `\$res``; ` `} ` ` `  `// Driver Code ` `\$arr` `= ``array``(2, 8, 5, 7, 9, 5, 7); ` ` `  `// used of SieveOfEratosthenes method  ` `// to detect a number prime or not ` `SieveOfEratosthenes(); ` `\$n` `= ``count``(``\$arr``); ` ` `  `echo` `"largest length of PrimeSubarray "` `.  ` `      ``longestPrimeSubarray(``\$arr``, ``\$n``); ` ` `  `// This code is contributed by mits ` `?> `

Output:
```largest length of PrimeSubarray 4
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :