Longest Increasing subarray with one change allowed

Given an array, find the length of the longest increasing subarray (contiguous elements) such that it is possible to change at most one number (change one number to any integer you want) from the sequence to make the sequence strictly increasing.

Examples: 

Input  : 6
         7 2 3 1 5 10 
Output : 5
Explanation : 
Here, we can choose subarray 2, 3, 1, 5, 10 
and by changing its 3rd element (that is 1) 
to 4, it will become increasing sequence.

Input  : 2
         10 10
Output : 2
Explanation : 
Here, we can choose subarray 10, 10 and by
changing its 2nd element (that is 10) to 11,
it will become increasing sequence.

Approach : 

Step 1: We first compute the longest increasing subarray ending at an index for every index in the given array. We store these values in l[]. 
Step 2: Then calculate the longest increasing subarray starting at an index for every index in the given array. We store these values in r[]. 
Step 3: Update the answer ans = max ( ans, l[i-1] + r[i+1] + 1), when a[i-1] + 1 < a[i+1].

Below is the implementation of the above idea: 



filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find longest increasing subarray
// with one change allowed.
#include <bits/stdc++.h>
using namespace std;
 
// Function to find length of
// subsequence
int seg(int a[], int n)
{
    int l[n], r[n + 1], ans = 0;
 
    // calculating the l array.
    l[0] = 1;
    for (int i = 1; i < n; i++)
    {
        if (a[i] > a[i - 1])
        {
            l[i] = l[i - 1] + 1;
            ans = max(ans, l[i]);
        }
        else
            l[i] = 1;
    }
    if (ans != n)
        ++ans;
 
    // calculating the r array.
    r[n] = 0;
    for (int i = n - 1; i >= 0; i--)
    {
        if (a[i] < a[i + 1])
            r[i] = r[i + 1] + 1;
        else
            r[i] = 1;
    }
 
    // updating the answer.
    for (int i = n - 2; i > 0; i--)
    {
        if (a[i + 1] - a[i - 1] > 1)
            ans = max(ans, l[i - 1] + r[i + 1] + 1);
    }
 
    return max(ans, r[0]);
}
 
// Driver code.
int main()
{
    int a[] = { 9, 4, 5, 1, 13 };
    int n = sizeof(a) / sizeof(a[0]);
   
    // Function call
    cout << seg(a, n);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find longest increasing subarray
// with one change allowed.
class GFG
{
 
    // Function to find length of
    // subsequence
    static int seg(int[] a, int n)
    {
        int[] l = new int[n];
        int[] r = new int[n + 1];
        int ans = 0;
 
        // calculating the l array.
        l[0] = 1;
        for (int i = 1; i < n; i++)
        {
            if (a[i] > a[i - 1])
            {
                l[i] = l[i - 1] + 1;
                ans = Math.max(ans, l[i]);
            }
            else
                l[i] = 1;
        }
        if (ans != n)
            ++ans;
 
        // calculating the r array.
        r[n] = 0;
        for (int i = n - 1; i > 0; i--)
        {
            if (a[i - 1] < a[i])
                r[i] = r[i + 1] + 1;
            else
                r[i] = 1;
        }
 
        // updating the answer.
        for (int i = n - 2; i > 0; i--)
        {
            if (a[i + 1] - a[i - 1] > 1)
                ans = Math.max(ans,
                               l[i - 1] + r[i + 1] + 1);
        }
        return Math.max(ans, r[0]);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] a = { 9, 4, 5, 1, 13 };
        int n = a.length;
 
        // Function call
        System.out.println(seg(a, n));
    }
}
 
// This code is contributed by
// sanjeev2552
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find
# longest increasing subarray
# with one change allowed.
 
# Function to find length of
# subsequence
def seg(a, n):
 
    l = [0] * n
    r = [0] * (n + 1)
    ans = 0
 
    # calculating the l array.
    l[0] = 1
    for i in range(1, n):
        if (a[i] > a[i - 1]):
            l[i] = l[i - 1] + 1
            ans = max(ans, l[i])
        else:
            l[i] = 1
 
    if (ans != n):
        ans += 1
 
    # calculating the
    # r array.
    r[n] = 0
    for i in range(n - 1,
                   -1, -1):
        if (a[i - 1] < a[i]):
            r[i] = r[i + 1] + 1
        else:
            r[i] = 1
 
    # Updating the answer.
    for i in range(n - 2,
                   0, -1):
        if (a[i + 1] -
            a[i - 1] > 1):
            ans = max(ans, l[i - 1] +
                      r[i + 1] + 1)
 
    return max(ans, r[0])
 
# Driver code.
if __name__ == "__main__":
 
    a = [9, 4, 5, 1, 13]
    n = len(a)
 
    # Function call
    print(seg(a, n))
 
# This code is contributed by Chitranayal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find longest increasing subarray
// with one change allowed.
using System;
 
class GFG {
 
    // Function to find length of
    // subsequence
    static int seg(int[] a, int n)
    {
        int[] l = new int[n];
        int[] r = new int[n + 1];
        int ans = 0;
 
        // calculating the l array.
        l[0] = 1;
        for (int i = 1; i < n; i++)
        {
            if (a[i] > a[i - 1])
            {
                l[i] = l[i - 1] + 1;
                ans = Math.Max(ans, l[i]);
            }
            else
                l[i] = 1;
        }
        if (ans != n)
            ++ans;
 
        // calculating the r array.
        r[n] = 0;
        for (int i = n - 1; i > 0; i--)
        {
            if (a[i - 1] < a[i])
                r[i] = r[i + 1] + 1;
            else
                r[i] = 1;
        }
 
        // updating the answer.
        for (int i = n - 2; i > 0; i--)
        {
            if (a[i + 1] - a[i - 1] > 1)
                ans = Math.Max(ans,
                               l[i - 1] + r[i + 1] + 1);
        }
        return Math.Max(ans, r[0]);
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int[] a = { 9, 4, 5, 1, 13 };
        int n = a.Length;
 
        // Function call
        Console.WriteLine(seg(a, n));
    }
}
 
// This code is contributed by PrinciRaj1992
chevron_right

Output
4

This article is contributed by Abhishek Sharma. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Article Tags :
Practice Tags :