Open In App

Limit Formula

If a given function y = f(x) is not defined at the point x = a. but the function can be defined at neighborhood values of x = a. That’s the limiting behavior of a function. limit helps us to determine the values of a function at x = a, but not the exact value, it’s an approaching value of x at a. When x approaches a and we can write as limx⇢a f(x). The approaching and exact value has a very very small difference between them i.e. if the exact point is 2 then the approaching value is 1.9999999… so on. This difference can’t affect any major.

Most students believe that a limit should be a finite number. But it is quite possible that f(x) had an infinite limit as x⇢a. i.e.  limx⇢a f(x) = ∞.



Limit Formulae

Trigonometric limits: To evaluate trigonometric limits, we have to reduce the terms of the function into simpler terms or into terms of sinθ and cosθ.  

As we considered our first one, 



limx ⇢ 0 sinx/x =1      

Using L-Hospital

limx ⇢ 0 cosx/1 

limx ⇢ 0 cos(0)/1 = 1/1 =1

If the function gives an indeterminate form by putting limits, Then use the l-hospital rule.

Indeterminate  Form 

0/0, ∞/∞, ∞-∞, ∞/0, 0, ∞0 , 00, ∞

L-hospital Rule

If we get the indeterminate form, then we differentiate the numerator and denominator separately until we get a finite value. Remember we would differentiate the numerator and denominator the same number of times. Similarly for all trigonometric function,

limx ⇢ 0 sin-1x/x =1

limx ⇢ 0 1/√1+x2  [Using L-Hospital] 

= 1/√(1 + (0)2) = 1

limx ⇢ a sin(x – a) / (x – a) 

=1

limx ⇢ a cos(x – a)/1 

= limx ⇢ a cos(a – a) = cos(0) =1

limx ⇢ ∞ sin(1/x)/(1/x) = 0

Let 1/x = h

So, limits changes to 0

Because 1\∞ = 0

limh ⇢ 0 sinh/h

As we see before, If limx ⇢ 0 sinx/x = 1

So, limh ⇢ 0 sinh/h = 1

Exponential limits 

Same here, we get our desired result by using L-hospital rule. 

Alternate method: Using expansion

ex = 1 + X + X2/2! + X3/3! + X4/4!+ … ∞

limx ⇢ 0  ex – 1 /x = 1

limx ⇢ 0 (1 + X + X2/2!+ —) -1 /x

limx ⇢ 0 (X + X2/2! + —)/x

limx ⇢ 0 1 + X + X2/2!+—

limx ⇢ 0 1 + 0 + 0 + 0 + 0— = 1

Logarithmic limits

Simply proved by using L-hospital and expansion method.

Some Important expansion 












 (Here, sinhx is a hyperbolic function)


Important Results : 

  1. limx⇢0 = e
  2. limx⇢0  = e
  3. limx⇢0 
  4. limx⇢0 = logea
  5. limx⇢0 = m2/2
  6. limx⇢0 

Shortcut : 

  1. limx⇢0 
  2. limx⇢0
  3. limx⇢a f(x)g(x) = e^{limx\to a\left[ f(x)-1 \right].g(x)}

Sample problem

Question 1: Solve, limx⇢0  (x – sinx ) /(1 – cosx).

Solution:

Using L-hospital,

limx ⇢ 0 (1 – cosx) / (sinx)

limx ⇢ 0 sinx / cosx = sin(0) / cos(0) = 0/1 = 0

Question 2: Solve, limx ⇢ 0 (e2x -1) / sin4x.

Solution:

Using L-hospital 

limx ⇢ 0 (2)(e2x) / cos4x

limx ⇢ 0  2(e0) / cos4(0) = 2/1= 2

Question 3: Solve, limx ⇢ 0 (1 – cosx) / x2

Solution:

Using L-hospital 

limx ⇢ 0 sinx /2x = 1/2 {sinx/x = 1}

Question 4: Solve, limx ⇢ ∞ 

Solution:

limx ⇢ ∞ (1 + )

1 + limx ⇢ ∞

As we know, x = ∞  

So 1/x = 0

1 + 0 = 0                                                                                                                                                 

Question 5: Solve, limx ⇢ π/2 (tanx)cosx 

Solution:

let Y = limx ⇢ π/2  (tanx)cosx

Taking loge both sides,

 logeY = limx ⇢ π/2  loge(tanx)cosx 

 logeY = limx ⇢ π/2  cosx loge(tanx)

logey = limx ⇢ π/2 loge(tanx)/secx

Using l-hospital,

logey = limx ⇢ π/2 cosx /sin2x = 0

Now, taking exponent on both sides,

Y = limx ⇢ π/2 e0 

Y = limx ⇢ π/2  (tanx)cosx = 1  

Question 6: limx ⇢ 0  

Solution:

limx⇢0 \frac{1+\frac{x}{1!} + \frac{x2}{2!} + \frac{x3}{3!} – ( 1+ x+ \frac{x2}{2!} ) }{x3}

limx⇢0 = 1/3! =1/6

Question 7: Solve, lima ⇢ 0  

Solution:

Using l-hospital (Differentiating numerator and denominator w.r.t a)  

lima ⇢ 0  xalogx = logx

Question 8: Solve, limx ⇢ 0 

Solution:

limx ⇢ 0 

limx ⇢ 0 1 + x/3! = 1


Article Tags :