Open In App

Implementation of Hash Table in Python using Separate Chaining

A hash table is a data structure that allows for quick insertion, deletion, and retrieval of data. It works by using a hash function to map a key to an index in an array. In this article, we will implement a hash table in Python using separate chaining to handle collisions.

Components of hashing

Separate chaining is a technique used to handle collisions in a hash table. When two or more keys map to the same index in the array, we store them in a linked list at that index. This allows us to store multiple values at the same index and still be able to retrieve them using their key.



Way to implement Hash Table using Separate Chaining

Way to implement Hash Table using Separate Chaining:

Create two classes: ‘Node‘ and ‘HashTable‘.



The ‘Node‘ class will represent a node in a linked list. Each node will contain a key-value pair, as well as a pointer to the next node in the list.




class Node:
    def __init__(self, key, value):
        self.key = key
        self.value = value
        self.next = None

The ‘HashTable’ class will contain the array that will hold the linked lists, as well as methods to insert, retrieve, and delete data from the hash table.




class HashTable:
    def __init__(self, capacity):
        self.capacity = capacity
        self.size = 0
        self.table = [None] * capacity

The  ‘__init__‘ method initializes the hash table with a given capacity. It sets the ‘capacity‘ and ‘size‘ variables and initializes the array to ‘None’.

The next method is the ‘_hash‘ method. This method takes a key and returns an index in the array where the key-value pair should be stored. We will use Python’s built-in hash function to hash the key and then use the modulo operator to get an index in the array.




def _hash(self, key):
    return hash(key) % self.capacity

The ‘insert’ method will insert a key-value pair into the hash table. It takes the index where the pair should be stored using the ‘_hash‘ method. If there is no linked list at that index, it creates a new node with the key-value pair and sets it as the head of the list. If there is a linked list at that index, iterate through the list till the last node is found or the key already exists, and update the value if the key already exists. If it finds the key, it updates the value. If it doesn’t find the key, it creates a new node and adds it to the head of the list.




def insert(self, key, value):
    index = self._hash(key)
 
    if self.table[index] is None:
        self.table[index] = Node(key, value)
        self.size += 1
    else:
        current = self.table[index]
        while current:
            if current.key == key:
                current.value = value
                return
            current = current.next
        new_node = Node(key, value)
        new_node.next = self.table[index]
        self.table[index] = new_node
        self.size += 1

The search method retrieves the value associated with a given key. It first gets the index where the key-value pair should be stored using the _hash method. It then searches the linked list at that index for the key. If it finds the key, it returns the associated value. If it doesn’t find the key, it raises a KeyError.




def search(self, key):
       index = self._hash(key)
 
       current = self.table[index]
       while current:
           if current.key == key:
               return current.value
           current = current.next
        raise KeyError(key)

The ‘remove’ method removes a key-value pair from the hash table. It first gets the index where the pair should be stored using the `_hash` method. It then searches the linked list at that index for the key. If it finds the key, it removes the node from the list. If it doesn’t find the key, it raises a `KeyError`.




def remove(self, key):
        index = self._hash(key)
  
        previous = None
        current = self.table[index]
  
        while current:
            if current.key == key:
                if previous:
                    previous.next = current.next
                else:
                    self.table[index] = current.next
                self.size -= 1
                return
            previous = current
            current = current.next
  
        raise KeyError(key)

‘__str__’ method that returns a string representation of the hash table.




def __str__(self):
    elements = []
    for i in range(self.capacity):
        current = self.table[i]
        while current:
            elements.append((current.key, current.value))
            current = current.next
    return str(elements)

Here’s the complete implementation of the ‘HashTable’ class:




class Node:
    def __init__(self, key, value):
        self.key = key
        self.value = value
        self.next = None
  
  
class HashTable:
    def __init__(self, capacity):
        self.capacity = capacity
        self.size = 0
        self.table = [None] * capacity
  
    def _hash(self, key):
        return hash(key) % self.capacity
  
    def insert(self, key, value):
        index = self._hash(key)
  
        if self.table[index] is None:
            self.table[index] = Node(key, value)
            self.size += 1
        else:
            current = self.table[index]
            while current:
                if current.key == key:
                    current.value = value
                    return
                current = current.next
            new_node = Node(key, value)
            new_node.next = self.table[index]
            self.table[index] = new_node
            self.size += 1
  
    def search(self, key):
        index = self._hash(key)
  
        current = self.table[index]
        while current:
            if current.key == key:
                return current.value
            current = current.next
  
        raise KeyError(key)
  
    def remove(self, key):
        index = self._hash(key)
  
        previous = None
        current = self.table[index]
  
        while current:
            if current.key == key:
                if previous:
                    previous.next = current.next
                else:
                    self.table[index] = current.next
                self.size -= 1
                return
            previous = current
            current = current.next
  
        raise KeyError(key)
  
    def __len__(self):
        return self.size
  
    def __contains__(self, key):
        try:
            self.search(key)
            return True
        except KeyError:
            return False
  
  
# Driver code
if __name__ == '__main__':
  
    # Create a hash table with
    # a capacity of 5
    ht = HashTable(5)
  
    # Add some key-value pairs
    # to the hash table
    ht.insert("apple", 3)
    ht.insert("banana", 2)
    ht.insert("cherry", 5)
  
    # Check if the hash table
    # contains a key
    print("apple" in ht)  # True
    print("durian" in ht)  # False
  
    # Get the value for a key
    print(ht.search("banana"))  # 2
  
    # Update the value for a key
    ht.insert("banana", 4)
    print(ht.search("banana"))  # 4
  
    ht.remove("apple")
    # Check the size of the hash table
    print(len(ht))  # 3

Output
True
False
2
4
3

Time Complexity and Space Complexity:

Conclusion:

In practice, it is important to choose an appropriate capacity for the hash table to balance the space usage and the likelihood of collisions. If the capacity is too small, the likelihood of collisions increases, which can cause performance degradation. On the other hand, if the capacity is too large, the hash table can consume more memory than necessary.


Article Tags :