Generate a Binary String without any consecutive 0’s and at most K consecutive 1’s

Given two integers N and M, the task is to construct a binary string with the following conditions : 

If it is not possible to construct such a binary string, then print -1.

Examples: 
 

Input: N = 5, M = 9, K = 2 
Output: 01101101101101 
Explanation: 
The string “01101101101101” satisfies the following conditions: 
 

  • No consecutive 0’s are present.
  • No more than K(= 2) consecutive 1’s are present.

Input: N = 4, M = 18, K = 4 
Output: 1101111011110111101111 
 



 

 

Approach:  

To construct a binary string satisfying the given properties, observe the following:

 
 

N – 1 ? M ? (N + 1) * K 
 

 

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to construct the binary string
string ConstructBinaryString(int N, int M,
                             int K)
{
    // Conditions when string construction
    // is not possible
    if (M < (N - 1) || M > K * (N + 1))
        return "-1";
 
    string ans = "";
 
    // Stores maximum 1's that
    // can be placed in between
    int l = min(K, M / (N - 1));
    int temp = N;
    while (temp--) {
        // Place 0's
        ans += '0';
 
        if (temp == 0)
            break;
 
        // Place 1's in between
        for (int i = 0; i < l; i++) {
            ans += '1';
        }
    }
 
    // Count remaining M's
    M -= (N - 1) * l;
 
    if (M == 0)
        return ans;
 
    l = min(M, K);
    // Place 1's at the end
    for (int i = 0; i < l; i++)
        ans += '1';
 
    M -= l;
    // Place 1's at the beginning
    while (M > 0) {
        ans = '1' + ans;
        M--;
    }
 
    // Return the final string
    return ans;
}
 
// Driver Code
int main()
{
    int N = 5, M = 9, K = 2;
 
    cout << ConstructBinaryString(N, M, K);
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of
// the above approach
class GFG{
     
// Function to construct the binary string
static String ConstructBinaryString(int N, int M,
                                    int K)
{
     
    // Conditions when string construction
    // is not possible
    if (M < (N - 1) || M > K * (N + 1))
        return "-1";
 
    String ans = "";
 
    // Stores maximum 1's that
    // can be placed in between
    int l = Math.min(K, M / (N - 1));
    int temp = N;
     
    while (temp != 0)
    {
        temp--;
         
        // Place 0's
        ans += '0';
 
        if (temp == 0)
            break;
 
        // Place 1's in between
        for(int i = 0; i < l; i++)
        {
            ans += '1';
        }
    }
 
    // Count remaining M's
    M -= (N - 1) * l;
 
    if (M == 0)
        return ans;
 
    l = Math.min(M, K);
     
    // Place 1's at the end
    for(int i = 0; i < l; i++)
        ans += '1';
 
    M -= l;
     
    // Place 1's at the beginning
    while (M > 0)
    {
        ans = '1' + ans;
        M--;
    }
 
    // Return the final string
    return ans;
}
 
// Driver code   
public static void main(String[] args)
{
    int N = 5, M = 9, K = 2;
     
    System.out.println(ConstructBinaryString(N, M, K));
}
}
 
// This code is contributed by rutvik_56
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of
# the above approach
 
# Function to construct the binary string
def ConstructBinaryString(N, M, K):
 
    # Conditions when string construction
    # is not possible
    if(M < (N - 1) or M > K * (N + 1)):
        return '-1'
 
    ans = ""
 
    # Stores maximum 1's that
    # can be placed in between
    l = min(K, M // (N - 1))
    temp = N
     
    while(temp):
        temp -= 1
 
        # Place 0's
        ans += '0'
 
        if(temp == 0):
            break
 
        # Place 1's in between
        for i in range(l):
            ans += '1'
 
    # Count remaining M's
    M -= (N - 1) * l
 
    if(M == 0):
        return ans
 
    l = min(M, K)
     
    # Place 1's at the end
    for i in range(l):
        ans += '1'
 
    M -= l
     
    # Place 1's at the beginning
    while(M > 0):
        ans = '1' + ans
        M -= 1
 
    # Return the final string
    return ans
 
# Driver Code
if __name__ == '__main__':
 
    N = 5
    M = 9
    K = 2
     
    print(ConstructBinaryString(N, M , K))
 
# This code is contributed by Shivam Singh
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of
// the above approach
using System;
class GFG{
      
// Function to construct the binary string
static String ConstructBinaryString(int N, int M,
                                    int K)
{
      
    // Conditions when string construction
    // is not possible
    if (M < (N - 1) || M > K * (N + 1))
        return "-1";
  
    string ans = "";
  
    // Stores maximum 1's that
    // can be placed in between
    int l = Math.Min(K, M / (N - 1));
    int temp = N;
      
    while (temp != 0)
    {
        temp--;
          
        // Place 0's
        ans += '0';
  
        if (temp == 0)
            break;
  
        // Place 1's in between
        for(int i = 0; i < l; i++)
        {
            ans += '1';
        }
    }
  
    // Count remaining M's
    M -= (N - 1) * l;
  
    if (M == 0)
        return ans;
  
    l = Math.Min(M, K);
      
    // Place 1's at the end
    for(int i = 0; i < l; i++)
        ans += '1';
  
    M -= l;
      
    // Place 1's at the beginning
    while (M > 0)
    {
        ans = '1' + ans;
        M--;
    }
  
    // Return the final string
    return ans;
}
  
// Driver code   
public static void Main(string[] args)
{
    int N = 5, M = 9, K = 2;
      
    Console.Write(ConstructBinaryString(N, M, K));
}
}
  
// This code is contributed by Ritik Bansal
chevron_right

Output: 
01101101101101


 

Time Complexity: O(N+M)
Auxiliary Space: O(N+M)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :