# Find the sum of the number of divisors

Given three integers A, B, C, the task is to find
ΣAi=1ΣBj=1ΣCk=1 d(i.j.k), where d(x) is the number of divisors of x. Answer can be very large, So, print answer modulo 109+7.

Examples:

```Input: A = 2, B = 2, c = 2
Output: 20
Explanation: d(1.1.1) = d(1) = 1;
d(1·1·2) = d(2) = 2;
d(1·2·1) = d(2) = 2;
d(1·2·2) = d(4) = 3;
d(2·1·1) = d(2) = 2;
d(2·1·2) = d(4) = 3;
d(2·2·1) = d(4) = 3;
d(2·2·2) = d(8) = 4.

Input: A = 5, B = 6, C = 7
Output: 1520
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

Below is the implementation of the above approach:

 `#include ` `using` `namespace` `std; ` ` `  `#define N 100005 ` `#define mod 1000000007 ` ` `  `// To store the number of divisors ` `int` `cnt[N]; ` ` `  `// Function to find the number of divisors ` `// of all numbers in  the range 1 to n ` `void` `Divisors() ` `{ ` `    ``memset``(cnt, 0, ``sizeof` `cnt); ` ` `  `    ``// For every number 1 to n ` `    ``for` `(``int` `i = 1; i < N; i++) { ` ` `  `        ``// Increase divisors count for every number ` `        ``for` `(``int` `j = 1; j * i < N; j++) ` `            ``cnt[i * j]++; ` `    ``} ` `} ` ` `  `// Function to find the sum of divisors ` `int` `Sumofdivisors(``int` `A, ``int` `B, ``int` `C) ` `{ ` `    ``// To store sum ` `    ``int` `sum = 0; ` ` `  `    ``Divisors(); ` ` `  `    ``for` `(``int` `i = 1; i <= A; i++) { ` `        ``for` `(``int` `j = 1; j <= B; j++) { ` `            ``for` `(``int` `k = 1; k <= C; k++) { ` `                ``int` `x = i * j * k; ` ` `  `                ``// Count the diviosrs ` `                ``sum += cnt[x]; ` `                ``if` `(sum >= mod) ` `                    ``sum -= mod; ` `            ``} ` `        ``} ` `    ``} ` ` `  `    ``return` `sum; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` ` `  `    ``int` `A = 5, B = 6, C = 7; ` ` `  `    ``// Function call ` `    ``cout << Sumofdivisors(A, B, C); ` ` `  `    ``return` `0; ` `} `

 `// Java code for above given approach ` `class` `GFG  ` `{ ` ` `  `    ``static` `int` `N = ``100005``; ` `    ``static` `int` `mod = ``1000000007``; ` ` `  `    ``// To store the number of divisors  ` `    ``static` `int` `cnt[] = ``new` `int``[N]; ` ` `  `    ``// Function to find the number of divisors  ` `    ``// of all numbers in the range 1 to n  ` `    ``static` `void` `Divisors()  ` `    ``{ ` ` `  `        ``// For every number 1 to n  ` `        ``for` `(``int` `i = ``1``; i < N; i++)  ` `        ``{ ` ` `  `            ``// Increase divisors count for every number  ` `            ``for` `(``int` `j = ``1``; j * i < N; j++)  ` `            ``{ ` `                ``cnt[i * j]++; ` `            ``} ` `        ``} ` `    ``} ` ` `  `    ``// Function to find the sum of divisors  ` `    ``static` `int` `Sumofdivisors(``int` `A, ``int` `B, ``int` `C)  ` `    ``{ ` `        ``// To store sum  ` `        ``int` `sum = ``0``; ` ` `  `        ``Divisors(); ` ` `  `        ``for` `(``int` `i = ``1``; i <= A; i++)  ` `        ``{ ` `            ``for` `(``int` `j = ``1``; j <= B; j++)  ` `            ``{ ` `                ``for` `(``int` `k = ``1``; k <= C; k++)  ` `                ``{ ` `                    ``int` `x = i * j * k; ` ` `  `                    ``// Count the diviosrs  ` `                    ``sum += cnt[x]; ` `                    ``if` `(sum >= mod)  ` `                    ``{ ` `                        ``sum -= mod; ` `                    ``} ` `                ``} ` `            ``} ` `        ``} ` ` `  `        ``return` `sum; ` `    ``} ` ` `  `    ``// Driver code  ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `A = ``5``, B = ``6``, C = ``7``; ` ` `  `        ``// Function call  ` `        ``System.out.println(Sumofdivisors(A, B, C)); ` `    ``} ` `} ` ` `  `/* This code contributed by PrinciRaj1992 */`

 `# Python3 code for above given approach ` `N ``=` `100005` `mod ``=` `1000000007` ` `  `# To store the number of divisors  ` `cnt ``=` `[``0``] ``*` `N;  ` ` `  `# Function to find the number of divisors  ` `# of all numbers in the range 1 to n  ` `def` `Divisors() :  ` ` `  `    ``# For every number 1 to n  ` `    ``for` `i ``in` `range``(``1``, N) : ` ` `  `        ``# Increase divisors count ` `        ``# for every number  ` `        ``for` `j ``in` `range``(``1``, N ``/``/` `i) :  ` `            ``cnt[i ``*` `j] ``+``=` `1``;  ` ` `  `# Function to find the sum of divisors  ` `def` `Sumofdivisors(A, B, C) :  ` `     `  `    ``# To store sum  ` `    ``sum` `=` `0``;  ` ` `  `    ``Divisors();  ` ` `  `    ``for` `i ``in` `range``(``1``,A ``+` `1``) : ` `        ``for` `j ``in` `range``(``1``, B ``+` `1``) :  ` `            ``for` `k ``in` `range``(``1``, C ``+` `1``) : ` `                ``x ``=` `i ``*` `j ``*` `k; ` `                 `  `                ``# Count the diviosrs ` `                ``sum` `+``=` `cnt[x]; ` `                ``if` `(``sum` `>``=` `mod) : ` `                    ``sum` `-``=` `mod;  ` ` `  `    ``return` `sum``;  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``A ``=` `5``; B ``=` `6``; C ``=` `7``;  ` ` `  `    ``# Function call  ` `    ``print``(Sumofdivisors(A, B, C));  ` ` `  `# This code is contributed by Ryuga `

 `// C# code for above given approach ` `using` `System; ` `     `  `class` `GFG  ` `{ ` ` `  `    ``static` `int` `N = 100005; ` `    ``static` `int` `mod = 1000000007; ` ` `  `    ``// To store the number of divisors  ` `    ``static` `int` `[]cnt = ``new` `int``[N]; ` ` `  `    ``// Function to find the number of divisors  ` `    ``// of all numbers in the range 1 to n  ` `    ``static` `void` `Divisors()  ` `    ``{ ` ` `  `        ``// For every number 1 to n  ` `        ``for` `(``int` `i = 1; i < N; i++)  ` `        ``{ ` ` `  `            ``// Increase divisors count for every number  ` `            ``for` `(``int` `j = 1; j * i < N; j++)  ` `            ``{ ` `                ``cnt[i * j]++; ` `            ``} ` `        ``} ` `    ``} ` ` `  `    ``// Function to find the sum of divisors  ` `    ``static` `int` `Sumofdivisors(``int` `A, ``int` `B, ``int` `C)  ` `    ``{ ` `        ``// To store sum  ` `        ``int` `sum = 0; ` ` `  `        ``Divisors(); ` ` `  `        ``for` `(``int` `i = 1; i <= A; i++)  ` `        ``{ ` `            ``for` `(``int` `j = 1; j <= B; j++)  ` `            ``{ ` `                ``for` `(``int` `k = 1; k <= C; k++)  ` `                ``{ ` `                    ``int` `x = i * j * k; ` ` `  `                    ``// Count the diviosrs  ` `                    ``sum += cnt[x]; ` `                    ``if` `(sum >= mod)  ` `                    ``{ ` `                        ``sum -= mod; ` `                    ``} ` `                ``} ` `            ``} ` `        ``} ` ` `  `        ``return` `sum; ` `    ``} ` ` `  `    ``// Driver code  ` `    ``public` `static` `void` `Main(String[] args) ` `    ``{ ` `        ``int` `A = 5, B = 6, C = 7; ` ` `  `        ``// Function call  ` `        ``Console.WriteLine(Sumofdivisors(A, B, C)); ` `    ``} ` `} ` ` `  `// This code contributed by Rajput-Ji `

Output:
```1520
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :