Open In App

Find the parent node of maximum product Siblings in given Binary Tree

Given a binary tree, the task is to find the node whose children have maximum Sibling product in the given Binary Tree. If there are multiple such nodes, return the node which has the maximum value.

Examples:



Input: Tree:
              4
           /   \
         5     2
      /  \
    3    1
  /  \
6   12
Output: 3
Explanation: For the above tree, the maximum product for the siblings is formed for nodes 6 and 12 which are the children of node 3.

Input: Tree:
                1
             /    \
          3       5
       /  \     /  \
     6    9  4    8
Output: 3
Explanation: For the above tree, the maximum product for the siblings is formed for nodes 6 and 9 which are the children of node 3.



Approach using Level Order Traversal:

To solve this problem, level order traversal of the Binary Tree can be used to find the maximum sum of siblings. Follow the following steps:

Below is the implementation of the above approach:




// C++ code to find the Parent Node
// of maximum product Siblings
// in given Binary Tree
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure for Node
struct Node {
    int data;
    Node *left, *right;
};
 
// Function to get a new node
Node* getNode(int data)
{
    // Allocate space
    Node* newNode
      = (Node*)malloc(sizeof(Node));
 
    // Put in the data
    newNode->data = data;
    newNode->left = newNode->right = NULL;
    return newNode;
}
 
// Function to get the parent
// of siblings with maximum product
int maxproduct(Node* root)
{
    int mproduct = INT_MIN;
    int ans = 0;
 
    // Checking base case
    if (root == NULL
        || (root->left == NULL
            && root->right == NULL))
        return 0;
 
    // Declaration of queue to run
    // level order traversal
    queue<Node*> q;
    q.push(root);
 
    // Loop to implement level order traversal
    while (!q.empty()) {
        Node* temp = q.front();
        q.pop();
 
        // If both the siblings are present
        // then take their product
        if (temp->right && temp->left) {
            int curr_max
                = temp->right->data
              * temp->left->data;
            if (mproduct < curr_max) {
                mproduct = curr_max;
                ans = temp->data;
            }
            else if (mproduct == curr_max) {
 
                // if max product is equal to
                // curr_max then consider node
                // which has maximum value
                ans = max(ans, temp->data);
            }
        }
 
        // pushing childs in the queue
        if (temp->right) {
            q.push(temp->right);
        }
        if (temp->left) {
            q.push(temp->left);
        }
    }
    return ans;
}
 
// Driver Code
int main()
{
    /* Binary tree creation
              1
            /   \
           3     5
          / \   / \
         6   9 4   8
      */
    Node* root = getNode(1);
    root->left = getNode(3);
    root->right = getNode(5);
    root->left->left = getNode(6);
    root->left->right = getNode(9);
    root->right->left = getNode(4);
    root->right->right = getNode(8);
 
    cout << maxproduct(root) << endl;
    return 0;
}




// Java code to find the Parent Node
// of maximum product Siblings
// in given Binary Tree
import java.util.LinkedList;
import java.util.Queue;
 
class GFG {
 
    // Structure for Node
    static class Node {
        int data;
        Node left;
        Node right;
 
        public Node(int data) {
            this.data = data;
            this.left = null;
            this.right = null;
        }
    };
 
    // Function to get a new node
    public static Node getNode(int data) {
        // Allocate space
        Node newNode = new Node(data);
 
        // Put in the data
        newNode.data = data;
        newNode.left = newNode.right = null;
        return newNode;
    }
 
    // Function to get the parent
    // of siblings with maximum product
    public static int maxproduct(Node root) {
        int mproduct = Integer.MIN_VALUE;
        int ans = 0;
 
        // Checking base case
        if (root == null
                || (root.left == null
                        && root.right == null))
            return 0;
 
        // Declaration of queue to run
        // level order traversal
        Queue<Node> q = new LinkedList<Node>();
 
        q.add(root);
 
        // Loop to implement level order traversal
        while (!q.isEmpty()) {
            Node temp = q.peek();
            q.remove();
 
            // If both the siblings are present
            // then take their product
            if (temp.right != null && temp.left != null) {
                int curr_max = temp.right.data
                        * temp.left.data;
                if (mproduct < curr_max) {
                    mproduct = curr_max;
                    ans = temp.data;
                } else if (mproduct == curr_max) {
 
                    // if max product is equal to
                    // curr_max then consider node
                    // which has maximum value
                    ans = Math.max(ans, temp.data);
                }
            }
 
            // pushing childs in the queue
            if (temp.right != null) {
                q.add(temp.right);
            }
            if (temp.left != null) {
                q.add(temp.left);
            }
        }
        return ans;
    }
 
    // Driver Code
    public static void main(String args[]) {
        /*
         * Binary tree creation
         * 1
         * / \
         * 3 5
         * / \ / \
         * 6 9 4 8
         */
        Node root = getNode(1);
        root.left = getNode(3);
        root.right = getNode(5);
        root.left.left = getNode(6);
        root.left.right = getNode(9);
        root.right.left = getNode(4);
        root.right.right = getNode(8);
 
        System.out.println(maxproduct(root));
    }
}
 
// This code is contributed by gfgking.




# Python Program to implement
# the above approach
 
# Structure of a node of binary tree
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
# Function to get a new node
def getNode(data):
 
    # Allocate space
    newNode = Node(data)
    return newNode
 
# Function to get the parent
# of siblings with maximum product
def maxproduct(root):
    mproduct = 10 ** -9
    ans = 0;
 
    # Checking base case
    if (root == None or (root.left == None and root.right == None)):
        return 0;
 
    # Declaration of queue to run
    # level order traversal
    q = [];
    q.append(root);
 
    # Loop to implement level order traversal
    while (len(q)):
        temp = q[0];
        q.pop(0);
 
        # If both the siblings are present
        # then take their product
        if (temp.right and temp.left):
            curr_max = temp.right.data * temp.left.data;
            if (mproduct < curr_max):
                mproduct = curr_max
                ans = temp.data
            elif (mproduct == curr_max):
 
                # if max product is equal to
                # curr_max then consider node
                # which has maximum value
                ans = max(ans, temp.data)
 
        # pushing childs in the queue
        if (temp.right):
            q.append(temp.right)
        if (temp.left):
            q.append(temp.left)
 
    return ans
 
# Driver Code
 
""" Binary tree creation
            1
        /   \
        3     5
        / \   / \
        6   9 4   8
"""
root = getNode(1);
root.left = getNode(3);
root.right = getNode(5);
root.left.left = getNode(6);
root.left.right = getNode(9);
root.right.left = getNode(4);
root.right.right = getNode(8);
 
print(maxproduct(root));
 
# This code is contributed by gfgking




// C# code to find the Parent Node
// of maximum product Siblings
// in given Binary Tree
using System;
using System.Collections.Generic;
 
public class GFG {
 
    // Structure for Node
    class Node {
        public int data;
        public Node left;
        public Node right;
 
        public Node(int data) {
            this.data = data;
            this.left = null;
            this.right = null;
        }
    };
 
    // Function to get a new node
    static Node getNode(int data) {
        // Allocate space
        Node newNode = new Node(data);
 
        // Put in the data
        newNode.data = data;
        newNode.left = newNode.right = null;
        return newNode;
    }
 
    // Function to get the parent
    // of siblings with maximum product
    static int maxproduct(Node root) {
        int mproduct = int.MinValue;
        int ans = 0;
 
        // Checking base case
        if (root == null
                || (root.left == null
                        && root.right == null))
            return 0;
 
        // Declaration of queue to run
        // level order traversal
        Queue<Node> q = new Queue<Node>();
 
        q.Enqueue(root);
 
        // Loop to implement level order traversal
        while (q.Count!=0) {
            Node temp = q.Peek();
            q.Dequeue();
 
            // If both the siblings are present
            // then take their product
            if (temp.right != null && temp.left != null) {
                int curr_max = temp.right.data
                        * temp.left.data;
                if (mproduct < curr_max) {
                    mproduct = curr_max;
                    ans = temp.data;
                } else if (mproduct == curr_max) {
 
                    // if max product is equal to
                    // curr_max then consider node
                    // which has maximum value
                    ans = Math.Max(ans, temp.data);
                }
            }
 
            // pushing childs in the queue
            if (temp.right != null) {
                q.Enqueue(temp.right);
            }
            if (temp.left != null) {
                q.Enqueue(temp.left);
            }
        }
        return ans;
    }
 
    // Driver Code
    public static void Main(String []args) {
        /*
         * Binary tree creation
         * 1
         * / \
         * 3 5
         * / \ / \
         * 6 9 4 8
         */
        Node root = getNode(1);
        root.left = getNode(3);
        root.right = getNode(5);
        root.left.left = getNode(6);
        root.left.right = getNode(9);
        root.right.left = getNode(4);
        root.right.right = getNode(8);
 
        Console.WriteLine(maxproduct(root));
    }
}
 
// This code is contributed by shikhasingrajput




<script>
 
        // JavaScript Program to implement
        // the above approach
 
        // Structure of a node of binary tree
        class Node {
            constructor(data) {
                this.data = data;
                this.left = null;
                this.right = null;
            }
        };
 
        // Function to get a new node
        function getNode(data)
        {
         
            // Allocate space
            let newNode
                = new Node(data);
            return newNode;
        }
 
        // Function to get the parent
        // of siblings with maximum product
        function maxproduct(root) {
            let mproduct = Number.MIN_VALUE;
            let ans = 0;
 
            // Checking base case
            if (root == null
                || (root.left == null
                    && root.right == null))
                return 0;
 
            // Declaration of queue to run
            // level order traversal
            let q = [];
            q.push(root);
 
            // Loop to implement level order traversal
            while (!q.length == 0) {
                let temp = q[0];
                q.shift();
 
                // If both the siblings are present
                // then take their product
                if (temp.right && temp.left) {
                    let curr_max
                        = temp.right.data
                        * temp.left.data;
                    if (mproduct < curr_max) {
                        mproduct = curr_max;
                        ans = temp.data;
                    }
                    else if (mproduct == curr_max) {
 
                        // if max product is equal to
                        // curr_max then consider node
                        // which has maximum value
                        ans = Math.max(ans, temp.data);
                    }
                }
 
                // pushing childs in the queue
                if (temp.right) {
                    q.push(temp.right);
                }
                if (temp.left) {
                    q.push(temp.left);
                }
            }
            return ans;
        }
 
        // Driver Code
 
        /* Binary tree creation
                  1
                /   \
               3     5
              / \   / \
             6   9 4   8
          */
        let root = getNode(1);
        root.left = getNode(3);
        root.right = getNode(5);
        root.left.left = getNode(6);
        root.left.right = getNode(9);
        root.right.left = getNode(4);
        root.right.right = getNode(8);
 
        document.write(maxproduct(root) + "<br>");
 
    // This code is contributed by Potta Lokesh
    </script>

Output
3






Time Complexity: O(V) where V is the number of nodes in the tree.
Auxiliary Space: O(V). 

Approach :- Using Postorder Traversal of Tree

  • The idea is to traverse the tree in postorder fashion .
  • Recursively , call the left subtree.
  • Recursively , call the right subtree.
  • Get , the product of left child and right child and update the max variable and max parent variable with parent root of left and right child.
  • Here , max parent variable will be storing the parent node of the maximum product siblings.

Below is the Implementation of this Approach :-




#include <climits>
#include <iostream>
 
// Structure for Node
struct Node {
    int data;
    Node* left;
    Node* right;
 
    Node(int data)
        : data(data)
        , left(nullptr)
        , right(nullptr)
    {
    }
};
 
// Function to get a new node
Node* getNode(int data)
{
    // Allocate space
    Node* newNode = new Node(data);
 
    // Put in the data
    newNode->data = data;
    newNode->left = newNode->right = nullptr;
    return newNode;
}
 
// Initialize, parentNode with -1
int parentNode = -1;
 
// Initialize, maxProductVal with INT_MIN
int maxProductVal = INT_MIN;
 
// Forward declaration of the helper function
int helper(Node* root);
 
// Function to get the parent of siblings with maximum
// product
int calculateMaxProduct(Node* root)
{
    // calling helper function to get ParentNode
    helper(root);
 
    return parentNode;
}
 
int helper(Node* root)
{
    // Base Case
    if (root == nullptr) {
        return 0;
    }
 
    // recursively, calling left part
    int left = helper(root->left);
 
    // recursively, calling right part
    int right = helper(root->right);
 
    // multiplying left and right to get product of the root
    int currProduct = left * right;
 
    // update maxProduct
    if (maxProductVal < currProduct) {
        maxProductVal = currProduct;
 
        // update the parentNode
        parentNode = root->data;
    }
 
    // return root data for every node
    return root->data;
}
 
// Driver Code
int main()
{
    /*
     * Binary tree creation
     *   1
     *  / \
     * 3   5
     * / \ / \
     * 6 9 4 8
     */
    Node* root = getNode(1);
    root->left = getNode(3);
    root->right = getNode(5);
    root->left->left = getNode(6);
    root->left->right = getNode(9);
    root->right->left = getNode(4);
    root->right->right = getNode(8);
 
    std::cout << calculateMaxProduct(root) << std::endl;
 
    // Free allocated memory
    delete root->left->left;
    delete root->left->right;
    delete root->right->left;
    delete root->right->right;
    delete root->left;
    delete root->right;
    delete root;
 
    return 0;
}




// Java code to find the Parent Node
// of maximum product Siblings
// in given Binary Tree
import java.util.LinkedList;
import java.util.Queue;
 
class GFG {
 
    // Structure for Node
    static class Node {
        int data;
        Node left;
        Node right;
 
        public Node(int data)
        {
            this.data = data;
            this.left = null;
            this.right = null;
        }
    };
 
    // Function to get a new node
    public static Node getNode(int data)
    {
        // Allocate space
        Node newNode = new Node(data);
 
        // Put in the data
        newNode.data = data;
        newNode.left = newNode.right = null;
        return newNode;
    }
 
    // Initialize , parentNode with -1
    static int parentNode = -1;
 
    // Initialize , maxProduct with INT_MIN
    static int maxProduct = Integer.MIN_VALUE;
 
    // Function to get the parent
    // of siblings with maximum product
 
    public static int maxproduct(Node root)
    {
 
        // calling helper function to get
        //  ParentNode
 
        helper(root);
 
        return parentNode;
    }
    static int helper(Node root)
    {
        // Base Case
        if (root == null) {
            return 0;
        }
 
        // recursively , calling left part
 
        int left = helper(root.left);
 
        // recursively , calling right part
 
        int right = helper(root.right);
 
        // multiplying left and right to get product
        // of the root
 
        int currProduct = left * right;
 
        // update maxProduct
 
        if (maxProduct < currProduct) {
            maxProduct = currProduct;
 
            // update the parentNode
 
            parentNode = root.data;
        }
 
        // return root data for every node
 
        return root.data;
    }
 
    // Driver Code
    public static void main(String args[])
    {
        /*
         * Binary tree creation
         * 1
         * / \
         * 3 5
         * / \ / \
         * 6 9 4 8
         */
        Node root = getNode(1);
        root.left = getNode(3);
        root.right = getNode(5);
        root.left.left = getNode(6);
        root.left.right = getNode(9);
        root.right.left = getNode(4);
        root.right.right = getNode(8);
 
        System.out.println(maxproduct(root));
    }
}
 
// This code is contributed by srimann7




import sys
 
# Class definition for Node
 
 
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
# Function to get a new node
 
 
def get_node(data):
    # Allocate space
    new_node = Node(data)
 
    # Put in the data
    new_node.data = data
    new_node.left = new_node.right = None
    return new_node
 
 
# Initialize parentNode with -1
parent_node = -1
 
# Initialize max_product_val with INT_MIN
max_product_val = -sys.maxsize - 1
 
# Helper function to calculate the maximum product
 
 
def helper(root):
    global parent_node, max_product_val
 
    # Base Case
    if root is None:
        return 0
 
    # Recursively calling left part
    left = helper(root.left)
 
    # Recursively calling right part
    right = helper(root.right)
 
    # Multiplying left and right to get the product of the root
    curr_product = left * right
 
    # Update max_product_val
    if max_product_val < curr_product:
        max_product_val = curr_product
 
        # Update the parent_node
        parent_node = root.data
 
    # Return root data for every node
    return root.data
 
# Function to calculate the parent of siblings with the maximum product
 
 
def calculate_max_product(root):
    # Calling the helper function to get parent_node
    helper(root)
 
    return parent_node
 
 
# Driver Code
if __name__ == "__main__":
    """
    Binary tree creation
        1
       / \
      3   5
     / \ / \
    6  9 4  8
    """
    root = get_node(1)
    root.left = get_node(3)
    root.right = get_node(5)
    root.left.left = get_node(6)
    root.left.right = get_node(9)
    root.right.left = get_node(4)
    root.right.right = get_node(8)
 
    print(calculate_max_product(root))
 
    # Free allocated memory
    del root.left.left
    del root.left.right
    del root.right.left
    del root.right.right
    del root.left
    del root.right
    del root




using System;
 
// Structure for Node
public class Node {
    public int data;
    public Node left;
    public Node right;
 
    public Node(int data)
    {
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
 
public class BinaryTree {
    // Initialize parentNode with -1
    private static int parentNode = -1;
 
    // Initialize maxProductVal with int.MinValue
    private static int maxProductVal = int.MinValue;
 
    // Function to get the parent of siblings with maximum
    // product
    private static int CalculateMaxProduct(Node root)
    {
        // calling helper function to get parentNode
        Helper(root);
 
        return parentNode;
    }
 
    private static int Helper(Node root)
    {
        // Base Case
        if (root == null) {
            return 0;
        }
 
        // Recursively calling the left part
        int left = Helper(root.left);
 
        // Recursively calling the right part
        int right = Helper(root.right);
 
        // Multiplying left and right to get the product of
        // the root
        int currProduct = left * right;
 
        // Update maxProduct
        if (maxProductVal < currProduct) {
            maxProductVal = currProduct;
 
            // Update the parentNode
            parentNode = root.data;
        }
 
        // Return root data for every node
        return root.data;
    }
 
    // Driver Code
    public static void Main()
    {
        /*
         * Binary tree creation
         *   1
         *  / \
         * 3   5
         * / \ / \
         * 6 9 4 8
         */
        Node root = new Node(1);
        root.left = new Node(3);
        root.right = new Node(5);
        root.left.left = new Node(6);
        root.left.right = new Node(9);
        root.right.left = new Node(4);
        root.right.right = new Node(8);
 
        Console.WriteLine(CalculateMaxProduct(root));
 
        // No need to free memory in C#, as it is managed by
        // the garbage collector
    }
}




// Structure for Node
class Node {
  constructor(data) {
    this.data = data;
    this.left = null;
    this.right = null;
  }
}
 
// Function to get a new node
function getNode(data) {
  const newNode = new Node(data);
  newNode.data = data;
  newNode.left = null;
  newNode.right = null;
  return newNode;
}
 
// Initialize parentNode with -1
let parentNode = -1;
 
// Initialize maxProductVal with Number.MIN_SAFE_INTEGER
let maxProductVal = Number.MIN_SAFE_INTEGER;
 
// Forward declaration of the helper function
function helper(root) {
  // Base Case
  if (root === null) {
    return 0;
  }
 
  // Recursively calling left part
  const left = helper(root.left);
 
  // Recursively calling right part
  const right = helper(root.right);
 
  // Multiplying left and right to get product of the root
  const currProduct = left * right;
 
  // Update maxProduct
  if (maxProductVal < currProduct) {
    maxProductVal = currProduct;
 
    // Update the parentNode
    parentNode = root.data;
  }
 
  // Return root data for every node
  return root.data;
}
 
// Function to get the parent of siblings with maximum product
function calculateMaxProduct(root) {
  // Calling helper function to get parentNode
  helper(root);
 
  return parentNode;
}
 
// Driver Code
/*
 * Binary tree creation
 *   1
 *  / \
 * 3   5
 * / \ / \
 * 6 9 4 8
 */
const root = getNode(1);
root.left = getNode(3);
root.right = getNode(5);
root.left.left = getNode(6);
root.left.right = getNode(9);
root.right.left = getNode(4);
root.right.right = getNode(8);
 
console.log(calculateMaxProduct(root));

Output
3





Time Complexity: O(N) , where N is the number of nodes in the tree
Auxiliary Space : O(N) , recursion stack space
 


Article Tags :